Question #205033

(D − 1)

2

(D

2 + 1)

2y = sin2

(

x

2

) + e

x + x


1
Expert's answer
2021-06-10T09:15:58-0400

Answer:-

(D1)2(D2+1)2y=sin2(x/2)+ex+x(D-1)^2(D^2+1)^2y=sin^2(x/2)+e^x+x


substitute y=ekxy=e^{kx}

then

DydydxkekxDy-\frac{dy}{dx}-ke^{kx}

D2y=d2ydx2=k2ekxD^2y=\frac{d^2y}{dx^2}=k^2e^{kx}

D4y=d4ydx4=k4ekxD^4y=\frac{d^4y}{dx^4}=k^4e^{kx}

(y2y+y)(y4+2y+y)=0(k2ekx2kekx+ekx)(k4ekx+2k2ekx+ekx)=0ekx(k22k+1)(k4+2k2+1)=0k=1;k=i;k=i(y''-2y'+y)(y^{4}+2y''+y)=0\\ (k^2e^{kx}-2ke^{kx}+e^{kx})(k^4e^{kx}+2k^2e^{kx}+e^{kx})=0\\ e^{kx}(k^2-2k+1)(k^4+2k^2+1)=0\\ k=1;k=i;k=-i

So, we have three fundamental solutions:

ex;eix;eixe^x;e^{ix};e^{-ix}

Each of those three fundamental solutions satisfies the homogeneous equation and also any linear combination of those. Each of roots 𝑘 is double and to obtain three more fundamental solutions we need to multiply the corresponding fundamental solution by 𝑥 :

xex;xsinx;xcosxxe^x;xsinx;xcosx\\

So the general solution to the homogeneous equation is

Y=Aex+Bxex+Csinx+Dxsinx+Ecosx+FxcosxY=Ae^x+Bxe^x+Csinx+Dxsinx+Ecosx+Fxcosx

where 𝐴, 𝐵, 𝐶,𝐷, 𝐸, 𝐹 are arbitrary constants.

Since 

sin2x2=12cosx2sin^2\frac{x}{2}=\frac{1}{2}-\frac{cosx}{2}

(y2y+y)(y(4)+2y+y)=12cosx2+ex+x(y''-2y'+y)(y^{(4)}+2y''+y)=\frac{1}{2}-\frac{cosx}{2}+e^x+x


To get 𝑒x a particular solution

y1~=ax2ex\widetilde{y_1}=ax^2e^x

now do second, third , fourth order differentiation of y1~\widetilde{y_1} we get

a=132y1~=x2ex32a=\frac{1}{32}\\ \widetilde{y_1}=\frac{x^2e^x}{32}


similarly

to get (cosx2)(-\frac{cosx}{2}) a particular solution

y2~=bx2cosx\widetilde{y_2}=bx^2cosx

now do second, third , fourth order differentiation of y2~\widetilde{y_2} we get

b=0y2~=0b=0\\ \widetilde{y_2}=0


to get (x+12)(x+\frac{1}{2}) a particular solution

y3~=cx+d\widetilde{y_3}=cx+d

y3~=cy3~=y3~(4)=0\widetilde{y_3}'=c\\ \widetilde{y_3}''= \widetilde{y_3}^{(4)}=0

we get (2c+cx+d)(cx+d)=x+12(-2c+cx+d)(cx+d)=x+\frac{1}{2}

c=0

y3~=0\widetilde{y_3}=0


y~=y1~+y2~+y3~=x2ex32\widetilde{y}= \widetilde{y_1}+ \widetilde{y_2}+ \widetilde{y_3}=\frac{x^2e^x}{32}

answer

y=Y+y~=Aex+Bxex+Csinx+Dxsinx+Ecosx+Fxcosx+x2ex32\boxed{y=Y+ \widetilde{y}=Ae^x+Bxe^x+Csinx+Dxsinx+Ecosx+Fxcosx+\frac{x^2e^x}{32}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS