(D − 1)
2
(D
2 + 1)
2y = sin2
(
x
2
) + e
x + x
Answer:-
"(D-1)^2(D^2+1)^2y=sin^2(x\/2)+e^x+x"
substitute "y=e^{kx}"
then
"Dy-\\frac{dy}{dx}-ke^{kx}"
"D^2y=\\frac{d^2y}{dx^2}=k^2e^{kx}"
"D^4y=\\frac{d^4y}{dx^4}=k^4e^{kx}"
"(y''-2y'+y)(y^{4}+2y''+y)=0\\\\\n(k^2e^{kx}-2ke^{kx}+e^{kx})(k^4e^{kx}+2k^2e^{kx}+e^{kx})=0\\\\\ne^{kx}(k^2-2k+1)(k^4+2k^2+1)=0\\\\\nk=1;k=i;k=-i"
So, we have three fundamental solutions:
"e^x;e^{ix};e^{-ix}"
Each of those three fundamental solutions satisfies the homogeneous equation and also any linear combination of those. Each of roots 𝑘 is double and to obtain three more fundamental solutions we need to multiply the corresponding fundamental solution by 𝑥 :
"xe^x;xsinx;xcosx\\\\"
So the general solution to the homogeneous equation is
"Y=Ae^x+Bxe^x+Csinx+Dxsinx+Ecosx+Fxcosx"
where 𝐴, 𝐵, 𝐶,𝐷, 𝐸, 𝐹 are arbitrary constants.
Since
"sin^2\\frac{x}{2}=\\frac{1}{2}-\\frac{cosx}{2}"
"(y''-2y'+y)(y^{(4)}+2y''+y)=\\frac{1}{2}-\\frac{cosx}{2}+e^x+x"
To get 𝑒x a particular solution
"\\widetilde{y_1}=ax^2e^x"
now do second, third , fourth order differentiation of "\\widetilde{y_1}" we get
"a=\\frac{1}{32}\\\\\n \\widetilde{y_1}=\\frac{x^2e^x}{32}"
similarly
to get "(-\\frac{cosx}{2})" a particular solution
"\\widetilde{y_2}=bx^2cosx"
now do second, third , fourth order differentiation of "\\widetilde{y_2}" we get
"b=0\\\\\n \\widetilde{y_2}=0"
to get "(x+\\frac{1}{2})" a particular solution
"\\widetilde{y_3}=cx+d"
"\\widetilde{y_3}'=c\\\\\n \\widetilde{y_3}''= \\widetilde{y_3}^{(4)}=0"
we get "(-2c+cx+d)(cx+d)=x+\\frac{1}{2}"
c=0
"\\widetilde{y_3}=0"
"\\widetilde{y}= \\widetilde{y_1}+ \\widetilde{y_2}+ \\widetilde{y_3}=\\frac{x^2e^x}{32}"
answer
"\\boxed{y=Y+ \\widetilde{y}=Ae^x+Bxe^x+Csinx+Dxsinx+Ecosx+Fxcosx+\\frac{x^2e^x}{32}}"
Comments
Leave a comment