Determine whether the following series converges or diverges. If the series converges, find its sum.
a. ββπ=1 (1+2n+1)/3n
b. ββπ=1 (3+2n)/(2n+2)
c. ββπ=1 1/(4n2-1)
a.
"\\lim\\limits_{n\\to \\infin}a_n=\\lim\\limits_{n\\to \\infin}\\dfrac{1+2^{n+1}}{3n}=\\infin\\not=0"
The series diverges by the Test for divergence.
b.
"\\lim\\limits_{n\\to \\infin}a_n=\\lim\\limits_{n\\to \\infin}\\dfrac{3+2^{n}}{2^{n+2}}=\\lim\\limits_{n\\to \\infin}\\dfrac{\\dfrac{3}{2^{n}}+\\dfrac{2^{n}}{2^{n}}}{\\dfrac{2^{n+2}}{2^{n}}}"
"=\\lim\\limits_{n\\to \\infin}\\dfrac{\\dfrac{3}{2^{n}}+1}{4}=\\dfrac{1}{4}\\not=0"
The series diverges by the Test for divergence.
c.
"=\\dfrac{1}{2}\\bigg(\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{1}{2n-1}-\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{1}{2n+1}\\bigg)""=\\dfrac{1}{2}\\bigg(\\dfrac{1}{1}-\\dfrac{1}{3}+\\dfrac{1}{3}-\\dfrac{1}{5}+...\\bigg)"
"\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{1}{4n^2-1}=\\dfrac{1}{2}"
The series converges and its sum is "\\dfrac{1}{2}."
Comments
Leave a comment