Question #95685
Let φ be the function on R^n defined by
φ(x) = e^(-|x|^(2)/2, x∈R
Compute (φ*φ)(x) for all x in R^n.
1
Expert's answer
2019-10-08T07:01:51-0400

(φφ)(x)=Rnφ(y)φ(xy)dy=Rney22exy22dy(\varphi*\varphi)(x)=\int\limits_{\mathbb R^n}\varphi(y)\cdot\varphi(x-y)dy=\int\limits_{\mathbb R^n}e^{-\frac{|y|^2}{2}}e^{-\frac{|x-y|^2}{2}}dy

Let y0=(y1,,yn1)y_0=(y_1,\ldots,y_{n-1}) and x0=(x1,,xn1)x_0=(x_1,\ldots,x_{n-1}) , then Rney22exy22dy=RRn1ey02+yn22ex0y02+(xnyn)22dy0dyn=\int\limits_{\mathbb R^n}e^{-\frac{|y|^2}{2}}e^{-\frac{|x-y|^2}{2}}dy=\int\limits_{\mathbb R}\int\limits_{\mathbb R^{n-1}}e^{-\frac{|y_0|^2+y_n^2}{2}}e^{-\frac{|x_0-y_0|^2+(x_n-y_n)^2}{2}}dy_0dy_n=

=R(Rn1ey022ex0y022dy0)eyn22e(xnyn)22dyn==\int\limits_{\mathbb R}\Bigl(\int\limits_{\mathbb R^{n-1}}e^{-\frac{|y_0|^2}{2}}e^{-\frac{|x_0-y_0|^2}{2}}dy_0\Bigr)e^{-\frac{y_n^2}{2}}e^{-\frac{(x_n-y_n)^2}{2}}dy_n=

=Rn1ey022ex0y022dy0Reyn22e(xnyn)22dyn=\int\limits_{\mathbb R^{n-1}}e^{-\frac{|y_0|^2}{2}}e^{-\frac{|x_0-y_0|^2}{2}}dy_0\cdot\int\limits_{\mathbb R}e^{-\frac{y_n^2}{2}}e^{-\frac{(x_n-y_n)^2}{2}}dy_n

Calculate Reyn22e(xnyn)22dyn\int\limits_{\mathbb R}e^{-\frac{y_n^2}{2}}e^{-\frac{(x_n-y_n)^2}{2}}dy_n :

Reyn22e(xnyn)22dyn=Re2yn2+xn22xnyn2dyn=\int\limits_{\mathbb R}e^{-\frac{y_n^2}{2}}e^{-\frac{(x_n-y_n)^2}{2}}dy_n=\int\limits_{\mathbb R}e^{-\frac{2y_n^2+x_n^2-2x_ny_n}{2}}dy_n=

=Re(yn2xn2)2+xn222dyn=\int\limits_{\mathbb R}e^{-\frac{\Bigl(y_n\sqrt{2}-\frac{x_n}{\sqrt{2}}\Bigr)^2+\frac{x_n^2}{2}}{2}}dy_n

Let zn=yn2xn2z_n=y_n\sqrt{2}-\frac{x_n}{\sqrt{2}} , then dyn=12dzndy_n=\frac{1}{\sqrt{2}}dz_n and

Re(yn2xn2)2+xn222dyn=Rezn2+xn22212dzn=\int\limits_{\mathbb R}e^{-\frac{\Bigl(y_n\sqrt{2}-\frac{x_n}{\sqrt{2}}\Bigr)^2+\frac{x_n^2}{2}}{2}}dy_n=\int\limits_{\mathbb R}e^{-\frac{z_n^2+\frac{x_n^2}{2}}{2}}\cdot\frac{1}{\sqrt{2}}dz_n=

=12exn24Rezn22dzn=\frac{1}{\sqrt{2}}e^{-\frac{x_n^2}{4}}\int\limits_{\mathbb R}e^{-\frac{z_n^2}{2}}dz_n

We know that the probability density function of a normal disribution N(0,1)N(0,1) is ρ(u)=12πeu22\rho(u)=\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}} , so R12πeu22du=1\int\limits_{\mathbb R}\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}du=1 , that is Reu22du=2π\int\limits_{\mathbb R}e^{-\frac{u^2}{2}}du=\sqrt{2\pi} . We obtain 12exn24Rezn22dzn=12exn242π=exn24π\frac{1}{\sqrt{2}}e^{-\frac{x_n^2}{4}}\int\limits_{\mathbb R}e^{-\frac{z_n^2}{2}}dz_n=\frac{1}{\sqrt{2}}e^{-\frac{x_n^2}{4}}\sqrt{2\pi}=e^{-\frac{x_n^2}{4}}\sqrt{\pi}

So Rney22exy22dy=exn24πRn1ey022ex0y022dy\int\limits_{\mathbb R^n}e^{-\frac{|y|^2}{2}}e^{-\frac{|x-y|^2}{2}}dy=e^{-\frac{x_n^2}{4}}\sqrt{\pi}\int\limits_{\mathbb R^{n-1}}e^{-\frac{|y_0|^2}{2}}e^{-\frac{|x_0-y_0|^2}{2}}dy

Therefore we can prove by induction on nn that (φφ)(x)=πn2ex24(\varphi*\varphi)(x)=\pi^{\frac{n}{2}}e^{-\frac{|x|^2}{4}}

It is true for n=1n=1 : we proved (φφ)(x)=Rey22e(xy)22dy=ex24π(\varphi*\varphi)(x)=\int\limits_{\mathbb R}e^{-\frac{y^2}{2}}e^{-\frac{(x-y)^2}{2}}dy=e^{-\frac{x^2}{4}}\sqrt{\pi}

Suppose that it is true for n=kn=k, where k1k\ge 1 . Then Rk+1ey22exy22dy=exk+124πRkey022ex0y022dy\int\limits_{\mathbb R^{k+1}}e^{-\frac{|y|^2}{2}}e^{-\frac{|x-y|^2}{2}}dy=e^{-\frac{x_{k+1}^2}{4}}\sqrt{\pi}\int\limits_{\mathbb R^k}e^{-\frac{|y_0|^2}{2}}e^{-\frac{|x_0-y_0|^2}{2}}dy , where y0=(y1,,yk)y_0=(y_1,\ldots,y_k) and x0=(x1,,xk)x_0=(x_1,\ldots,x_k) .

By induction hypohesis Rkey022ex0y022dy=πk2ex024\int\limits_{\mathbb R^k}e^{-\frac{|y_0|^2}{2}}e^{-\frac{|x_0-y_0|^2}{2}}dy=\pi^{\frac{k}{2}}e^{-\frac{|x_0|^2}{4}} , so exk+124πRkey022ex0y022dy=exk+124ππk2ex024=e^{-\frac{x_{k+1}^2}{4}}\sqrt{\pi}\int\limits_{\mathbb R^k}e^{-\frac{|y_0|^2}{2}}e^{-\frac{|x_0-y_0|^2}{2}}dy=e^{-\frac{x_{k+1}^2}{4}}\sqrt{\pi}\cdot\pi^{\frac{k}{2}}e^{-\frac{|x_0|^2}{4}}=

=πk+12ex24=\pi^{\frac{k+1}{2}}e^{-\frac{|x|^2}{4}} . We proved that Rk+1ey22exy22dy=πk+12ex24\int\limits_{\mathbb R^{k+1}}e^{-\frac{|y|^2}{2}}e^{-\frac{|x-y|^2}{2}}dy=\pi^{\frac{k+1}{2}}e^{-\frac{|x|^2}{4}}.

By principle of mathematical induction we obtain (φφ)(x)=Rney22exy22dy=πn2ex24(\varphi*\varphi)(x)=\int\limits_{\mathbb R^n}e^{-\frac{|y|^2}{2}}e^{-\frac{|x-y|^2}{2}}dy=\pi^{\frac{n}{2}}e^{-\frac{|x|^2}{4}}

Answer: (φφ)(x)=πn2ex24(\varphi*\varphi)(x)=\pi^{\frac{n}{2}}e^{-\frac{|x|^2}{4}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS