Question #95682
Prove that for all multi-indices a and all functions φ in S, x^(a)φ∈S and ∂ ^(a)φ∈S.
1
Expert's answer
2019-10-07T09:20:18-0400

1) limx+xuβxβ(αφxα)=limx+xuα+βφxα+β\lim\limits_{|x|\to+\infty}x^u\frac{\partial^{|\beta|}}{\partial x^\beta}\bigl(\frac{\partial^{|\alpha|}\varphi}{\partial x^\alpha}\bigr)=\lim\limits_{|x|\to+\infty}x^u\frac{\partial^{|\alpha+\beta|}\varphi}{\partial x^{\alpha+\beta}}. Since φS\varphi\in S, we have limx+xuα+βφxα+β=0\lim\limits_{|x|\to+\infty}x^u\frac{\partial^{|\alpha+\beta|}\varphi}{\partial x^{\alpha+\beta}}=0, so αφxαS\frac{\partial^{|\alpha|}\varphi}{\partial x^\alpha}\in S

2)Prove by induction on β|\beta| that βxβ(xαφ)=γinf{α,β}δβCγδxαγδφxδ\frac{\partial^{|\beta|}}{\partial x^\beta}\bigl(x^\alpha\varphi\bigr)=\sum\limits_{\gamma\le\inf\{\alpha,\beta\}}\sum\limits_{\delta\le\beta}C_{\gamma\delta}x^{\alpha-\gamma}\frac{\partial^{|\delta|}\varphi}{\partial x^\delta} for some CγδC_{\gamma\delta} (if ε\varepsilon and ρ\rho are multiindices, then ερi=1,,n ε(i)ρ(i)\varepsilon\le\rho\Leftrightarrow\forall i=1,\ldots,n\ \varepsilon(i)\le\rho(i) ).

a)If β=0|\beta|=0, then γ=0\gamma=0 and δ=0\delta=0, so C00=1C_{00}=1

b)Let it is true for all β|\beta|, where βk|\beta|\le k.

c)Consider βxβ(xαφ)\frac{\partial^{|\beta|}}{\partial x^\beta}\bigl(x^\alpha\varphi\bigr), where β=k+1|\beta|=k+1. Then β(s)={β(s),if stβ(s)+1,if s=t\beta(s)=\begin{cases} \beta'(s),&\text{if $s\neq t$}\\ \beta'(s)+1,&\text{if $s=t$} \end{cases} for some tt and β\beta', where β=k|\beta'|=k.

So βxβ(xαφ)=xt(βxβ(xαφ))\frac{\partial^{|\beta|}}{\partial x^\beta}\bigl(x^\alpha\varphi\bigr)=\frac{\partial}{\partial x_t}\left(\frac{\partial^{|\beta'|}}{\partial x^{\beta'}}\bigl(x^\alpha\varphi\bigr)\right) . By induction hypothesis we have βxβ(xαφ)=xt(γinf{α,β}δβCγδxαγδφxδ)=\frac{\partial^{|\beta|}}{\partial x^\beta}\bigl(x^\alpha\varphi\bigr)=\frac{\partial}{\partial x_t}\left(\sum\limits_{\gamma'\le\inf\{\alpha,\beta'\}}\sum\limits_{\delta'\le\beta'}C_{\gamma'\delta'}x^{\alpha-\gamma'}\frac{\partial^{|\delta'|}\varphi}{\partial x^{\delta'}}\right)=

γinf{α,β}δβCγδ(xαγxtδφxδ+xαγδ+1φxδxt)\sum\limits_{\gamma'\le\inf\{\alpha,\beta'\}}\sum\limits_{\delta'\le\beta'}C_{\gamma'\delta'}\left(\frac{\partial x^{\alpha-\gamma'}}{\partial x_t}\frac{\partial^{|\delta'|}\varphi}{\partial x^{\delta'}}+x^{\alpha-\gamma'}\frac{\partial^{|\delta'+1|}\varphi}{\partial x^{\delta'}\partial x_t}\right)

Let γ(s)={γ(s),if stγ(s)+1,if s=t\gamma(s)=\begin{cases} \gamma'(s),&\text{if $s\neq t$}\\ \gamma'(s)+1,&\text{if $s=t$} \end{cases} and δ(s)={δ(s),if stδ(s)+1,if s=t\delta(s)=\begin{cases} \delta'(s),&\text{if $s\neq t$}\\ \delta'(s)+1,&\text{if $s=t$} \end{cases} , then γβ\gamma\le\beta and δβ\delta\le\beta

We have xαγxt={(α(t)γ(t))xαγ,if γα0,if γα is false\frac{\partial x^{\alpha-\gamma'}}{\partial x_t}=\begin{cases} (\alpha(t)-\gamma'(t))x^{\alpha-\gamma},&\text{if $\gamma\le\alpha$}\\ 0,&\text{if $\gamma\le\alpha$ is false} \end{cases} , so xαγxtδφxδ=0\frac{\partial x^{\alpha-\gamma'}}{\partial x_t}\frac{\partial^{|\delta'|}\varphi}{\partial x^{\delta'}}=0 if γα\gamma\le\alpha is false, and xαγxtδφxδ=(α(t)γ(t))xαγxtδφxδ\frac{\partial x^{\alpha-\gamma'}}{\partial x_t}\frac{\partial^{|\delta'|}\varphi}{\partial x^{\delta'}}=(\alpha(t)-\gamma(t))\frac{\partial x^{\alpha-\gamma}}{\partial x_t}\frac{\partial^{|\delta'|}\varphi}{\partial x^{\delta'}} if γα\gamma\le\alpha . Also we have γβ\gamma\le\beta and δδβ\delta'\le\delta\le\beta.

Next, xαγδ+1φxδxt=xαγδφxδx^{\alpha-\gamma'}\frac{\partial^{|\delta'+1|}\varphi}{\partial x^{\delta'}\partial x_t}=x^{\alpha-\gamma'}\frac{\partial^{|\delta|}\varphi}{\partial x^{\delta}} , where γγβ\gamma'\le\gamma\le\beta, γα\gamma'\le\alpha and δβ\delta\le\beta .

So we obtain that βxβ(xαφ)\frac{\partial^{|\beta|}}{\partial x^\beta}\bigl(x^\alpha\varphi\bigr) is linear combination of xαγδφxδx^{\alpha-\gamma}\frac{\partial^{|\delta|}\varphi}{\partial x^\delta} , where γinf{α,β}\gamma\le\inf\{\alpha,\beta\} and δβ\delta\le\beta.

By principle of mathematical induction we have that βxβ(xαφ)=γinf{α,β}δβCγδxαγδφxδ\frac{\partial^{|\beta|}}{\partial x^\beta}\bigl(x^\alpha\varphi\bigr)=\sum\limits_{\gamma\le\inf\{\alpha,\beta\}}\sum\limits_{\delta\le\beta}C_{\gamma\delta}x^{\alpha-\gamma}\frac{\partial^{|\delta|}\varphi}{\partial x^\delta} for some CγδC_{\gamma\delta} .

Then limx+xuβxβ(xαφ)=limx+xuγinf{α,β}δβCγδxαγδφxδ=\lim\limits_{|x|\to+\infty}x^u\frac{\partial^{|\beta|}}{\partial x^\beta}\bigl(x^\alpha\varphi\bigr)=\lim\limits_{|x|\to+\infty}x^u\sum\limits_{\gamma\le\inf\{\alpha,\beta\}}\sum\limits_{\delta\le\beta}C_{\gamma\delta}x^{\alpha-\gamma}\frac{\partial^{|\delta|}\varphi}{\partial x^\delta}=

=γinf{α,β}δβCγδlimx+xαγ+uδφxδ=\sum\limits_{\gamma\le\inf\{\alpha,\beta\}}\sum\limits_{\delta\le\beta}C_{\gamma\delta}\lim\limits_{|x|\to+\infty}x^{\alpha-\gamma+u}\frac{\partial^{|\delta|}\varphi}{\partial x^\delta}

Since φS\varphi\in S, for every γ\gamma and δ\delta from sum we have limx+xαγ+uδφxδ=0\lim\limits_{|x|\to+\infty}x^{\alpha-\gamma+u}\frac{\partial^{|\delta|}\varphi}{\partial x^\delta}=0, so limx+xuβxβ(xαφ)=0\lim\limits_{|x|\to+\infty}x^u\frac{\partial^{|\beta|}}{\partial x^\beta}\bigl(x^\alpha\varphi\bigr)=0. That is xαφSx^\alpha\varphi\in S.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS