1) ∣x∣→+∞limxu∂xβ∂∣β∣(∂xα∂∣α∣φ)=∣x∣→+∞limxu∂xα+β∂∣α+β∣φ. Since φ∈S, we have ∣x∣→+∞limxu∂xα+β∂∣α+β∣φ=0, so ∂xα∂∣α∣φ∈S
2)Prove by induction on ∣β∣ that ∂xβ∂∣β∣(xαφ)=γ≤inf{α,β}∑δ≤β∑Cγδxα−γ∂xδ∂∣δ∣φ for some Cγδ (if ε and ρ are multiindices, then ε≤ρ⇔∀i=1,…,n ε(i)≤ρ(i) ).
a)If ∣β∣=0, then γ=0 and δ=0, so C00=1
b)Let it is true for all ∣β∣, where ∣β∣≤k.
c)Consider ∂xβ∂∣β∣(xαφ), where ∣β∣=k+1. Then β(s)={β′(s),β′(s)+1,if s=tif s=t for some t and β′, where ∣β′∣=k.
So ∂xβ∂∣β∣(xαφ)=∂xt∂(∂xβ′∂∣β′∣(xαφ)) . By induction hypothesis we have ∂xβ∂∣β∣(xαφ)=∂xt∂(γ′≤inf{α,β′}∑δ′≤β′∑Cγ′δ′xα−γ′∂xδ′∂∣δ′∣φ)=
γ′≤inf{α,β′}∑δ′≤β′∑Cγ′δ′(∂xt∂xα−γ′∂xδ′∂∣δ′∣φ+xα−γ′∂xδ′∂xt∂∣δ′+1∣φ)
Let γ(s)={γ′(s),γ′(s)+1,if s=tif s=t and δ(s)={δ′(s),δ′(s)+1,if s=tif s=t , then γ≤β and δ≤β
We have ∂xt∂xα−γ′={(α(t)−γ′(t))xα−γ,0,if γ≤αif γ≤α is false , so ∂xt∂xα−γ′∂xδ′∂∣δ′∣φ=0 if γ≤α is false, and ∂xt∂xα−γ′∂xδ′∂∣δ′∣φ=(α(t)−γ(t))∂xt∂xα−γ∂xδ′∂∣δ′∣φ if γ≤α . Also we have γ≤β and δ′≤δ≤β.
Next, xα−γ′∂xδ′∂xt∂∣δ′+1∣φ=xα−γ′∂xδ∂∣δ∣φ , where γ′≤γ≤β, γ′≤α and δ≤β .
So we obtain that ∂xβ∂∣β∣(xαφ) is linear combination of xα−γ∂xδ∂∣δ∣φ , where γ≤inf{α,β} and δ≤β.
By principle of mathematical induction we have that ∂xβ∂∣β∣(xαφ)=γ≤inf{α,β}∑δ≤β∑Cγδxα−γ∂xδ∂∣δ∣φ for some Cγδ .
Then ∣x∣→+∞limxu∂xβ∂∣β∣(xαφ)=∣x∣→+∞limxuγ≤inf{α,β}∑δ≤β∑Cγδxα−γ∂xδ∂∣δ∣φ=
=γ≤inf{α,β}∑δ≤β∑Cγδ∣x∣→+∞limxα−γ+u∂xδ∂∣δ∣φ
Since φ∈S, for every γ and δ from sum we have ∣x∣→+∞limxα−γ+u∂xδ∂∣δ∣φ=0, so ∣x∣→+∞limxu∂xβ∂∣β∣(xαφ)=0. That is xαφ∈S.
Comments