∣ x a ∣ ⩽ ∣ x ∣ ∣ a ∣ ∀ x ∈ R n , a = ( a 1 , a 2 , . . . , a n ) , a n ⩾ 0 |x^a|\leqslant|x|^{|a|} \ \ \forall x\isin\Reals^{n}, \ a=(a_1,a_2,...,a_n), a_n\geqslant0 ∣ x a ∣ ⩽ ∣ x ∣ ∣ a ∣ ∀ x ∈ R n , a = ( a 1 , a 2 , ... , a n ) , a n ⩾ 0
∣ x a ∣ = ∣ x 1 a 1 x 2 a 2 . . . x n a n ∣ = ∣ x 1 a 1 ∣ ∣ x 2 a 2 ∣ . . . ∣ x n a n ∣ = ∣ x 1 ∣ a 1 ∣ x 2 ∣ a 2 . . . ∣ x 3 ∣ a 3 |x^a|=|x_1^{a_1}x_2^{a_2}...x_n^{a_n}|=|x_1^{a_1}||x_2^{a_2}|...|x_n^{a_n}|=|x_1|^{a_1}|x_2|^{a_2}...|x_3|^{a_3} ∣ x a ∣ = ∣ x 1 a 1 x 2 a 2 ... x n a n ∣ = ∣ x 1 a 1 ∣∣ x 2 a 2 ∣...∣ x n a n ∣ = ∣ x 1 ∣ a 1 ∣ x 2 ∣ a 2 ...∣ x 3 ∣ a 3
∣ x ∣ ∣ a ∣ = ∣ x ∣ a 1 + a 2 + . . . + a n = ∣ x ∣ a 1 ∣ x ∣ a 2 . . . ∣ x ∣ a n = x 1 2 + x 2 2 + . . . + x n 2 a 1 x 1 2 + x 2 2 + . . . + x n 2 a 2 . . . x 1 2 + x 2 2 + . . . + x n 2 a n |x|^{|a|}=|x|^{a_1+a_2+...+a_n}=|x|^{a_1}|x|^{a_2}...|x|^{a_n}=\sqrt{x_1^2+x_2^2+...+x_n^2}^{a_1}\sqrt{x_1^2+x_2^2+...+x_n^2}^{a_2}...\sqrt{x_1^2+x_2^2+...+x_n^2}^{a_n} ∣ x ∣ ∣ a ∣ = ∣ x ∣ a 1 + a 2 + ... + a n = ∣ x ∣ a 1 ∣ x ∣ a 2 ...∣ x ∣ a n = x 1 2 + x 2 2 + ... + x n 2 a 1 x 1 2 + x 2 2 + ... + x n 2 a 2 ... x 1 2 + x 2 2 + ... + x n 2 a n
∣ x a ∣ ⩽ ∣ x ∣ ∣ a ∣ |x^a|\leqslant|x|^{|a|} ∣ x a ∣ ⩽ ∣ x ∣ ∣ a ∣
Comments