Question #95676
Prove that for all x in R^n and all multi-indices a,
|x^a| ≤ |x|^(|a|)
1
Expert's answer
2019-10-02T10:03:00-0400

xaxa  xRn, a=(a1,a2,...,an),an0|x^a|\leqslant|x|^{|a|} \ \ \forall x\isin\Reals^{n}, \ a=(a_1,a_2,...,a_n), a_n\geqslant0

xa=x1a1x2a2...xnan=x1a1x2a2...xnan=x1a1x2a2...x3a3|x^a|=|x_1^{a_1}x_2^{a_2}...x_n^{a_n}|=|x_1^{a_1}||x_2^{a_2}|...|x_n^{a_n}|=|x_1|^{a_1}|x_2|^{a_2}...|x_3|^{a_3}

xa=xa1+a2+...+an=xa1xa2...xan=x12+x22+...+xn2a1x12+x22+...+xn2a2...x12+x22+...+xn2an|x|^{|a|}=|x|^{a_1+a_2+...+a_n}=|x|^{a_1}|x|^{a_2}...|x|^{a_n}=\sqrt{x_1^2+x_2^2+...+x_n^2}^{a_1}\sqrt{x_1^2+x_2^2+...+x_n^2}^{a_2}...\sqrt{x_1^2+x_2^2+...+x_n^2}^{a_n}

xaxa|x^a|\leqslant|x|^{|a|}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS