We need to prove that "\\frac{|x^a|}{|x|^{|a|}} \\leq 1". Rewrite the last expression as:"\\frac{|x^{\\alpha}|}{|x|^{|\\alpha|}} = \\frac{ \\sqrt{ x_1^{2\\alpha_1} + \\dots + x_n^{2\\alpha_n} } }{|x|^{|\\alpha|} } \n\\leq ( \\frac{ x_1^{2\\alpha_1} + \\dots + x_n^{2\\alpha_n} }{|x|^{2|\\alpha|}})^{\\frac{1}{2}}\n\\leq \\left(\\frac{x_1^{2\\alpha_1}}{|x|^{2|\\alpha|}} + \\dots + \\frac{x_n^{2\\alpha_n}}{|x|^{2|\\alpha|}}\\right)^{\\frac{1}{2}}\n = \\left|\\left(\\frac{x_1^{\\alpha_1}}{|x|^{\\alpha_1}}, \\dots, \\frac{x_n^{\\alpha_n}}{|x|^{\\alpha_n}}\\right )\\right|" .
The right side of the last expression is equal to"|e^a|", where "e = (\\frac{x_1}{|x|}, ... \\frac{x_n}{|x|})" is the unit vector.
Using sup-norm inequality "|x^a| \\leq ||x||_{\\infty}^{|a|}" and norm inequality "||x||_{\\infty}^{|a|} \\leq |x|^{|a|}" , obtain "|e^a| \\leq |e|^a = 1".
Hence, "\\frac{|x^a|}{|x|^{|a|}} \\leq 1".
Comments
Leave a comment