Question #95631
Prove that for all x in R^n and all multi-indices a,
|x^a|<= |x|^(|a|)
1
Expert's answer
2019-10-01T11:06:52-0400

We need to prove that xaxa1\frac{|x^a|}{|x|^{|a|}} \leq 1. Rewrite the last expression as:xαxα=x12α1++xn2αnxα(x12α1++xn2αnx2α)12(x12α1x2α++xn2αnx2α)12=(x1α1xα1,,xnαnxαn)\frac{|x^{\alpha}|}{|x|^{|\alpha|}} = \frac{ \sqrt{ x_1^{2\alpha_1} + \dots + x_n^{2\alpha_n} } }{|x|^{|\alpha|} } \leq ( \frac{ x_1^{2\alpha_1} + \dots + x_n^{2\alpha_n} }{|x|^{2|\alpha|}})^{\frac{1}{2}} \leq \left(\frac{x_1^{2\alpha_1}}{|x|^{2|\alpha|}} + \dots + \frac{x_n^{2\alpha_n}}{|x|^{2|\alpha|}}\right)^{\frac{1}{2}} = \left|\left(\frac{x_1^{\alpha_1}}{|x|^{\alpha_1}}, \dots, \frac{x_n^{\alpha_n}}{|x|^{\alpha_n}}\right )\right| .

The right side of the last expression is equal toea|e^a|, where e=(x1x,...xnx)e = (\frac{x_1}{|x|}, ... \frac{x_n}{|x|}) is the unit vector.

Using sup-norm inequality xaxa|x^a| \leq ||x||_{\infty}^{|a|} and norm inequality xaxa||x||_{\infty}^{|a|} \leq |x|^{|a|} , obtain eaea=1|e^a| \leq |e|^a = 1.

Hence, xaxa1\frac{|x^a|}{|x|^{|a|}} \leq 1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS