Prove that for all x in R^n and all multi-indices a,
|x^a|<= |x|^(|a|)
1
Expert's answer
2019-10-01T11:06:52-0400
We need to prove that ∣x∣∣a∣∣xa∣≤1. Rewrite the last expression as:∣x∣∣α∣∣xα∣=∣x∣∣α∣x12α1+⋯+xn2αn≤(∣x∣2∣α∣x12α1+⋯+xn2αn)21≤(∣x∣2∣α∣x12α1+⋯+∣x∣2∣α∣xn2αn)21=∣∣(∣x∣α1x1α1,…,∣x∣αnxnαn)∣∣ .
The right side of the last expression is equal to∣ea∣, where e=(∣x∣x1,...∣x∣xn) is the unit vector.
Using sup-norm inequality ∣xa∣≤∣∣x∣∣∞∣a∣ and norm inequality ∣∣x∣∣∞∣a∣≤∣x∣∣a∣ , obtain ∣ea∣≤∣e∣a=1.
Comments