Question #95123
If x,y,z are length of the perpandicular dropped from a point inside the triangle of given area A,on the three sides of the triangle then the minimum value of x^2+y^2+z^2 is 4A^2/a^2+b^2+c^2
1
Expert's answer
2019-09-24T11:42:27-0400

Let ABC and H be given triangle and point inside it.

Let x=HA1,y=HB1,z=HC1x=HA_1,y=HB_1,z=HC_1 be lengths of the perpendicualars to the sides a=BC,b=AC,c=ABa=BC,b=AC,c=AB respectively. We have ax2,by2,cz2\frac{ax}{2},\frac{by}{2},\frac{cz}{2} are areas of the triangles BCH,ACH,ABHBCH, ACH, ABH respectively, so ax+by+cz=2Aax+by+cz=2A. We can express zz: z=2Aaxbycz=\frac{2A-ax-by}{c}.

Then F(x,y)=x2+y2+z2=x2+y2+(2Aaxbyc)2=F(x,y)=x^2+y^2+z^2=x^2+y^2+\bigl(\frac{2A-ax-by}{c}\bigr)^2=

=1c2(x2c2+y2c2+4A2+a2x2+=\frac{1}{c^2}(x^2c^2+y^2c^2+4A^2+a^2x^2+

+b2y24Aax4Aby+2abxy)+b^2y^2-4Aax-4Aby+2abxy) .

Since x0x\ge 0, y0y\ge 0 and z=2Aaxbyc0z=\frac{2A-ax-by}{c}\ge 0, FF is defined on the set U={(x,y)R2:x0,y0,ax+by2A}U=\{(x,y)\in\mathbb R^2: x\ge0, y\ge0,ax+by\le 2A\}. Since UU is bounded (U[0,2Aa]×[0,2Ab]U\subset\bigl[0,\frac{2A}{a}\bigr]\times\bigl[0,\frac{2A}{b}\bigr] ) and closed, UU is a compact set by criterion of compactness in Rn\mathbb R^n .

Moreover, F(x,y)=x2+y2+z20F(x,y)=x^2+y^2+z^2\ge 0 for all xx and yy . So F(U)F(U) is bounded from below.

Since UU is a compact set, FF is a continuous function bounded from below on UU , we have that there is the minimum of FF on UU.

If we want to minimize F(x,y)F(x,y) , then we need such xx and yy that Fx(x,y)=0\frac{\partial F}{\partial x}(x,y)=0 and Fy(x,y)=0\frac{\partial F}{\partial y}(x,y)=0.

So 0=Fx(x,y)=2c2(xc2+xa22Aa+aby)0=\frac{\partial F}{\partial x}(x,y)=\frac{2}{c^2}(xc^2+xa^2-2Aa+aby) and 0=Fy(x,y)=2c2(yc2+yb22Ab+abx)0=\frac{\partial F}{\partial y}(x,y)=\frac{2}{c^2}(yc^2+yb^2-2Ab+abx) .

We obtain the linear equation system

{xc2+xa22Aa+aby=0yc2+yb22Ab+abx=0\begin{cases} xc^2+xa^2-2Aa+aby=0\\ yc^2+yb^2-2Ab+abx=0 \end{cases}

The system has the only one solution x0=2aAa2+b2+c2x_0=\frac{2aA}{a^2+b^2+c^2} and y0=2bAa2+b2+c2y_0=\frac{2bA}{a^2+b^2+c^2} (so F(x0,y0)F(x_0,y_0) is minimum of F(x,y)F(x,y)) . Value of z0z_0 is z0=2Aax0by0c=2cAa2+b2+c2z_0=\frac{2A-ax_0-by_0}{c}=\frac{2cA}{a^2+b^2+c^2} . So minimum of FF on UU is F(x0,y0)=x02+y02+z02=4A2a2+b2+c2F(x_0,y_0)=x_0^2+y_0^2+z_0^2=\frac{4A^2}{a^2+b^2+c^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS