First of all, let's find derivative of our function:
(x+x2−x3)′=1+2x−3x2=0
D=4−4∗(−3)=42,x1=−6−2−4=1,x2=−6−2+4=−31,
f′(1−ϵ)>0,f′(1+ϵ)<0⟹x=1− local maximum, now let's prove that it's maximum value of the function when x∈[0,+∞):f(0)=0<f(1),f′′(x)=2−6x⟹∀x∈[1,+∞):f′′(x)<0, for this reason:
f′(x) is monotonically decreasing function ∀x∈[1,+∞) ⟹∀x>1:f′(x)<0⟹f(x)− monotonically decreasing function. f(1)=fmax(x) for x∈[0,+∞)
Comments