Question #94897
Find the maximun value of the function f(x)=x+x^2-x^3 for x>=0
1
Expert's answer
2019-09-23T06:10:54-0400

First of all, let's find derivative of our function:

(x+x2x3)=1+2x3x2=0(x+x^2-x^3)'=1+2x-3x^2=0

D=44(3)=42,x1=246=1,x2=2+46=13,D=4-4*(-3)=4^2, \\ x_1= \cfrac{-2-4}{-6}=1, x_2=\cfrac{-2+4}{-6}=-\cfrac{1}{3},

f(1ϵ)>0,f(1+ϵ)<0    x=1f'(1-\epsilon)>0, f'(1+\epsilon)<0 \implies x=1 - local maximum, now let's prove that it's maximum value of the function when x[0,+):f(0)=0<f(1),f(x)=26x    x[1,+):f(x)<0,x\in[0,+\infin): f(0)=0<f(1), f''(x)=2-6x \implies \forall x \in [1, +\infin): f''(x)<0, for this reason:

f(x)f'(x) is monotonically decreasing function  x[1,+)\forall x \in [1, +\infin)     x>1:f(x)<0    f(x)\implies \forall x>1: f'(x)<0 \implies f(x) - monotonically decreasing function. f(1)=fmax(x)f(1)=f_{max}(x) for x[0,+)x\in[0, +\infin)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS