Let us differentiate using:
- The Leibniz rule: if"f(x) = g_1(x) g_2(x) ... g_n(x)", then "f'(x) = g_1' g_2 ... g_n + ... + g_1 ... g_n'"
- The chain rule: if"f(x) = g(h(x))" , then "f'(x) = g'(h(x))h'(x)"
Hence, "y'(x) = 2 x (x^2 + 2)^2 + x^2 \\cdot 2 (x^2 + 2) \\cdot 2 x = 2 (3 x^5 + 8 x^3 + 4 x)".
Comments
Leave a comment