dydx=3x2−4x+3.\frac{dy}{dx}=3x^2-4x+3.dxdy=3x2−4x+3.
dydx=2,so 3x2−4x+3=2 or 3x2−4x+1=0.\frac{dy}{dx}=2, so\; 3x^2-4x+3=2 \; or\; 3x^2-4x+1=0.dxdy=2,so3x2−4x+3=2or3x2−4x+1=0.
Thus, x=13 or x=1.x=\frac{1}{3}\;or\;x=1.x=31orx=1.
y(13)=−11327,y(1)=−3.y(\frac{1}{3})=-\frac{113}{27}, y(1)=-3.y(31)=−27113,y(1)=−3.
Points on the curve where its gradient is 2: (13,−11327) and (1,−3).(\frac{1}{3},-\frac{113}{27}) \; and\; (1,-3).(31,−27113)and(1,−3).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments