Question #94824
Compute the first thrre derivatives of \\(f(x)=2x^{5}+x^{\\frac{3}{2}}-\\frac{1}{2x}\\)
1
Expert's answer
2019-09-19T12:26:04-0400
 Answer

f(x)=120x238x32+3x4.f'''(x)=120x^2-{\frac{3}{8}}x^{-\frac{3}{2}}+3x^{-4}.

Explanation

According the linearity property of the derivative for any triple of constants c1, c2, c3 and three functions f, g and h we have

(c1f + c2g + c3h)’ = c1f’ + c2g’ + c3h’.

On the other hand the differentiation rule of power function can be written in the form

(xn)=nxn1(x^{n})'=nx^{n-1}

Because,1x=x1\frac{1}{x}=x^{-1} we can write

f(x)=2x5+x3212x1f(x)=2x^5+x^{\frac{3}{2}}-\frac{1}{2}x^{-1}

So,

f(x)=(2x5+x3212x1)=10x4+32x12+12x2f'(x)=(2x^5+x^{\frac{3}{2}}-\frac{1}{2}x^{-1})'=10x^4+{\frac{3}{2}}x^{\frac{1}{2}}+\frac{1}{2}x^{-2}

For the second derivative we get

f(x)=(10x4+32x12+12x2)=40x3+34x12x3f''(x)=(10x^4+{\frac{3}{2}}x^{\frac{1}{2}}+\frac{1}{2}x^{-2})'=40x^3+{\frac{3}{4}}x^{-\frac{1}{2}}-x^{-3}

And for the third derivative we have

f(x)=(40x3+34x12x3)=120x238x32+3x4.f'''(x)=(40x^3+{\frac{3}{4}}x^{-\frac{1}{2}}-x^{-3})'=120x^2-{\frac{3}{8}}x^{-\frac{3}{2}}+3x^{-4}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS