Question #95459
Trace the curve y²=(x+1)(x-1)² by showing all the properties you use to trace it.
1
Expert's answer
2019-10-01T10:29:24-0400

y1=(x1)(x+1)y2=(x1)x+1y_1=(x-1)\sqrt{(x+1)}\\ y_2=-(x-1)\sqrt{x+1}

y1=(x+1)+(x1)2(x+1)=3x+12(x+1)y1=32(x+1)3x+14(x+1)(x+1)=3x+54(x+1)(x+1)y2=3x+12(x+1)y2=3x+54(x+1)(x+1)y_1'=\sqrt{(x+1)}+\frac{(x-1)}{2\sqrt{(x+1)}}=\frac{3x+1}{2\sqrt{(x+1)}}\\ y_1''=\frac{3}{2\sqrt{(x+1)}}-\frac{3x+1}{4(x+1)\sqrt{(x+1)}}=\\ \frac{3x+5}{4(x+1)\sqrt{(x+1)}}\\ y_2'=-\frac{3x+1}{2\sqrt{(x+1)}}\\ y_2''=-\frac{3x+5}{4(x+1)\sqrt{(x+1)}}

zero of y1=0 and y2=0isx=1/3y_1'=0\ and \ y_2'=0\,is \, x=-1/3

Since y1(1/3)>0, y1y_1''(-1/3)>0,\ y_1 has minimum at this point.

Since y_2''(-1/3)<0,\ y_2\ has maximum at this point.

Since 0y2 and 0(x1)20\le y^2 \ and \ 0\le(x-1)^2 ,it follows that 0(x+1) and 1x0\le(x+1)\ and\ -1\le x

Intersections with axis:

y=0, (x+1)(x1)2=0, x=±1y=0, \ (x+1)(x-1)²=0,\ x=\pm1

x=0, y=±1x=0,\ y=\pm 1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS