y 1 = ( x − 1 ) ( x + 1 ) y 2 = − ( x − 1 ) x + 1 y_1=(x-1)\sqrt{(x+1)}\\
y_2=-(x-1)\sqrt{x+1} y 1 = ( x − 1 ) ( x + 1 ) y 2 = − ( x − 1 ) x + 1
y 1 ′ = ( x + 1 ) + ( x − 1 ) 2 ( x + 1 ) = 3 x + 1 2 ( x + 1 ) y 1 ′ ′ = 3 2 ( x + 1 ) − 3 x + 1 4 ( x + 1 ) ( x + 1 ) = 3 x + 5 4 ( x + 1 ) ( x + 1 ) y 2 ′ = − 3 x + 1 2 ( x + 1 ) y 2 ′ ′ = − 3 x + 5 4 ( x + 1 ) ( x + 1 ) y_1'=\sqrt{(x+1)}+\frac{(x-1)}{2\sqrt{(x+1)}}=\frac{3x+1}{2\sqrt{(x+1)}}\\
y_1''=\frac{3}{2\sqrt{(x+1)}}-\frac{3x+1}{4(x+1)\sqrt{(x+1)}}=\\
\frac{3x+5}{4(x+1)\sqrt{(x+1)}}\\
y_2'=-\frac{3x+1}{2\sqrt{(x+1)}}\\
y_2''=-\frac{3x+5}{4(x+1)\sqrt{(x+1)}} y 1 ′ = ( x + 1 ) + 2 ( x + 1 ) ( x − 1 ) = 2 ( x + 1 ) 3 x + 1 y 1 ′′ = 2 ( x + 1 ) 3 − 4 ( x + 1 ) ( x + 1 ) 3 x + 1 = 4 ( x + 1 ) ( x + 1 ) 3 x + 5 y 2 ′ = − 2 ( x + 1 ) 3 x + 1 y 2 ′′ = − 4 ( x + 1 ) ( x + 1 ) 3 x + 5
zero of y 1 ′ = 0 a n d y 2 ′ = 0 i s x = − 1 / 3 y_1'=0\ and \ y_2'=0\,is \, x=-1/3 y 1 ′ = 0 an d y 2 ′ = 0 i s x = − 1/3
Since y 1 ′ ′ ( − 1 / 3 ) > 0 , y 1 y_1''(-1/3)>0,\ y_1 y 1 ′′ ( − 1/3 ) > 0 , y 1 has minimum at this point.
Since y_2''(-1/3)<0,\ y_2\ has maximum at this point.
Since 0 ≤ y 2 a n d 0 ≤ ( x − 1 ) 2 0\le y^2 \ and \ 0\le(x-1)^2 0 ≤ y 2 an d 0 ≤ ( x − 1 ) 2 ,it follows that 0 ≤ ( x + 1 ) a n d − 1 ≤ x 0\le(x+1)\ and\ -1\le x 0 ≤ ( x + 1 ) an d − 1 ≤ x
Intersections with axis:
y = 0 , ( x + 1 ) ( x − 1 ) 2 = 0 , x = ± 1 y=0, \ (x+1)(x-1)²=0,\ x=\pm1 y = 0 , ( x + 1 ) ( x − 1 ) 2 = 0 , x = ± 1
x = 0 , y = ± 1 x=0,\ y=\pm 1 x = 0 , y = ± 1
Comments