Question #95681
2. Let a and β be multi-indices such that β ≤ a. Prove that
∂^(β) x^(a) = Σ (a,β) β!x^(a - β)
β≤a
1
Expert's answer
2019-10-03T08:52:55-0400

Since it is not indicated that xRnx\in\mathbb{R}^n , so I will assume for simplicity that


β(xα)dβ(xα)\partial^\beta\left(x^\alpha\right)\equiv d^\beta\left(x^\alpha\right)

Remarks: in the condition there is an expression (α,β)\left(\alpha,\,\beta\right) - this is a binomial coefficient.When solving the problem, I will write it in the traditional form



(α,β)(αβ)α!β!(αβ)!\left(\alpha,\,\beta\right)\equiv\dbinom{\alpha}{\beta}\equiv\frac{\alpha!}{\beta!\cdot(\alpha-\beta)!}

( More information: https://en.wikipedia.org/wiki/Binomial_coefficient )


Next, by definition


d(xα)=αxα1Power ruledn(f)=dn1(d(f))dn1(f)d\left(x^\alpha\right)=\alpha\cdot x^{\alpha-1}\quad\textnormal{Power rule}\\[0.5cm] d^n\left(f\right)=d^{n-1}\left(d\left(f\right)\right)\equiv d^{n-1}\left(f'\right)

( More information: https://en.wikipedia.org/wiki/Differentiation_rules )


Then,



dβ(xα)=dβ1(d(xα))=dβ1(αxα1)==αdβ2(d(xα1))=α(α1)dβ2(xα2)===α(α1)(α(β1))xαβ==α(α1)1(αβ)(1)β!β!xαβ=α!(αβ)!β!β!xαβd^\beta\left(x^\alpha\right)=d^{\beta-1}\left(d\left(x^\alpha\right)\right)= d^{\beta-1}\left(\alpha\cdot x^{\alpha-1}\right)=\\[0.3cm] =\alpha\cdot d^{\beta-2}\left( d\left(x^{\alpha-1}\right)\right)= \alpha(\alpha-1)\cdot d^{\beta-2}\left(x^{\alpha-2}\right)=\\[0.3cm] =\ldots=\alpha(\alpha-1)\cdot\ldots\cdot(\alpha-(\beta-1))\cdot x^{\alpha-\beta}=\\[0.3cm] =\frac{\alpha(\alpha-1)\cdot\ldots\cdot1}{(\alpha-\beta)\cdot\ldots(1)\cdot\beta!}\cdot \beta!\cdot x^{\alpha-\beta}=\frac{\alpha!}{(\alpha-\beta)!\cdot\beta!}\cdot\beta!\cdot x^{\alpha-\beta}

Conclusion,



dβ(xα)=α!(αβ)!β!β!xαβ(αβ)β!xαβ\boxed{d^\beta\left(x^\alpha\right)=\frac{\alpha!}{(\alpha-\beta)!\cdot\beta!}\cdot\beta!\cdot x^{\alpha-\beta} \equiv\dbinom{\alpha}{\beta}\cdot\beta!\cdot x^{\alpha-\beta}}

Q.E.D.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
02.10.19, 10:24

Dear Rachel. Thank you for a clarification.

Rachel
02.10.19, 07:49

The "β≤a" at the end of the question should be situated under Σ.

LATEST TUTORIALS
APPROVED BY CLIENTS