∣f^(ξ)∣=∣∫−∞∞e−2πixξf(x)dx∣≤|f̂(ξ)|=|\int_{-\infty}^{\infty}e^{-2\pi i x ξ}f(x)dx|\le∣f^(ξ)∣=∣∫−∞∞e−2πixξf(x)dx∣≤
∫−∞∞∣e−2πixξ∣∣f(x)∣dx=\int_{-\infty}^{\infty}|e^{-2\pi i x ξ}||f(x)|dx=∫−∞∞∣e−2πixξ∣∣f(x)∣dx=
∫−∞∞1⋅f(x)dx=\int_{-\infty}^{\infty}1\cdot f(x)dx=∫−∞∞1⋅f(x)dx=
∫−∞∞∣e−2πix⋅0∣f(x)dx=\int_{-\infty}^{\infty}|e^{-2\pi i x \cdot0}|f(x)dx=∫−∞∞∣e−2πix⋅0∣f(x)dx= f̂(0)
And therefore |f̂(ξ)| ≤ f̂(0).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments