Question #95684
Let f be a nonnegative function in L^1(R^n). Prove that
|f̂(ξ)| ≤ f̂(0), ξ∈R^n
1
Expert's answer
2019-10-04T10:33:27-0400

f^(ξ)=e2πixξf(x)dx|f̂(ξ)|=|\int_{-\infty}^{\infty}e^{-2\pi i x ξ}f(x)dx|\le

e2πixξf(x)dx=\int_{-\infty}^{\infty}|e^{-2\pi i x ξ}||f(x)|dx=

1f(x)dx=\int_{-\infty}^{\infty}1\cdot f(x)dx=

e2πix0f(x)dx=\int_{-\infty}^{\infty}|e^{-2\pi i x \cdot0}|f(x)dx=  f̂(0)

And therefore |f̂(ξ)| ≤ f̂(0).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS