1)We have "F(x,y)=x^4-4xy+2y^2=0".
The implicit function theorem tells us that gradient of the tangent is "y'(x)=-\\frac{F'_x(x,y)}{F'_y(x,y)}". The tangent and the normal are perpendicular, so gradient of the normal is "-\\frac{1}{y'(x)}=\\frac{F'_y(x,y)}{F'_x(x,y)}"
"F'_x(x,y)=4x^3-4y", "F'_y(x,y)=-4x+4y" , so "\\frac{1}{y'(x)}=\\frac{y-x}{x^3-y}" and "-\\frac{1}{y'(-1)}=\\frac{3-(-1)}{(-1)^3-3}=-1"
Answer: -1
2)"((x^3-9)^{10})'=10(x^3-9)^9\\cdot 3x^2=30x^2(x^3-9)^9"
Comments
Leave a comment