1)We have F(x,y)=x4−4xy+2y2=0.
The implicit function theorem tells us that gradient of the tangent is y′(x)=−Fy′(x,y)Fx′(x,y). The tangent and the normal are perpendicular, so gradient of the normal is −y′(x)1=Fx′(x,y)Fy′(x,y)
Fx′(x,y)=4x3−4y, Fy′(x,y)=−4x+4y , so y′(x)1=x3−yy−x and −y′(−1)1=(−1)3−33−(−1)=−1
Answer: -1
2)((x3−9)10)′=10(x3−9)9⋅3x2=30x2(x3−9)9
Comments