Γ(−32)=∫0∞x−32−1e−xdx\Gamma(-\frac{3}{2})=\int\limits_0^\infty x^{-\frac{3}{2}-1}e^{-x}dxΓ(−23)=0∫∞x−23−1e−xdx
It is known that
Γ(1−z)Γ(z)=πsinπz\Gamma(1-z)\Gamma(z)=\frac{\pi}{sin\pi z}Γ(1−z)Γ(z)=sinπzπ
Hence for z=1/2
Γ2(12)=π\Gamma^2(\frac{1}{2})=\piΓ2(21)=π
Γ(12)=π\Gamma(\frac{1}{2})=\sqrt{\pi}Γ(21)=π
It is also known that Γ(z+1)=zΓ(z)\Gamma(z+1)=z\Gamma(z)Γ(z+1)=zΓ(z)
Therefore
Γ(12)=−12Γ(−12)=34Γ(−32)\Gamma(\frac{1}{2})=-\frac{1}{2}\Gamma(-\frac{1}{2})=\frac{3}{4}\Gamma(-\frac{3}{2})Γ(21)=−21Γ(−21)=43Γ(−23)
Γ(−32)=43Γ(12)=4π3\Gamma(-\frac{3}{2})=\frac{4}{3}\Gamma(\frac{1}{2})=\frac{4\sqrt{\pi}}{3}Γ(−23)=34Γ(21)=34π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments