Question #94478
Evaluate Gamma (-frac{3}{2})
1
Expert's answer
2019-09-16T10:55:59-0400

Γ(32)=0x321exdx\Gamma(-\frac{3}{2})=\int\limits_0^\infty x^{-\frac{3}{2}-1}e^{-x}dx

It is known that

Γ(1z)Γ(z)=πsinπz\Gamma(1-z)\Gamma(z)=\frac{\pi}{sin\pi z}

Hence for z=1/2

Γ2(12)=π\Gamma^2(\frac{1}{2})=\pi

Γ(12)=π\Gamma(\frac{1}{2})=\sqrt{\pi}

It is also known that Γ(z+1)=zΓ(z)\Gamma(z+1)=z\Gamma(z)

Therefore

Γ(12)=12Γ(12)=34Γ(32)\Gamma(\frac{1}{2})=-\frac{1}{2}\Gamma(-\frac{1}{2})=\frac{3}{4}\Gamma(-\frac{3}{2})

Γ(32)=43Γ(12)=4π3\Gamma(-\frac{3}{2})=\frac{4}{3}\Gamma(\frac{1}{2})=\frac{4\sqrt{\pi}}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS