Question #94180
Let ω0<π/2. The value of ∑[sin(ω0n)/πn]^4 equals
1
Expert's answer
2019-09-18T12:04:55-0400




i=1(sin(nx))4n41.015(sinx)69/20,0<x<π/2\displaystyle\sum_{i=1}^ \infin{(sin(nx))^4 \over n^4}\approx1.015(sinx)^{69/20}, 0<x<\pi/2


i=1(sin(nω0))4n41.015(sin(ω0))69/20,0<ω0<π/2\displaystyle\sum_{i=1}^ \infin{(sin(n\omega_0))^4 \over n^4}\approx1.015(sin(\omega_0))^{69/20}, 0<\omega_0<\pi/2

Then


i=1(sin(ω0n))4(πn)41.015π4(sin(ω0))69/20,0<ω0<π/2\displaystyle\sum_{i=1}^ \infin{(sin(\omega_0n))^4 \over (\pi n)^4}\approx{1.015 \over \pi^4}(sin(\omega_0))^{69/20}, 0<\omega_0<\pi/2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS