Answer to Question #94180 in Calculus for Harsha
Let ω0<π/2. The value of ∑[sin(ω0n)/πn]^4 equals
1
2019-09-18T12:04:55-0400
"\\displaystyle\\sum_{i=1}^ \\infin{(sin(nx))^4 \\over n^4}\\approx1.015(sinx)^{69\/20}, 0<x<\\pi\/2"
"\\displaystyle\\sum_{i=1}^ \\infin{(sin(n\\omega_0))^4 \\over n^4}\\approx1.015(sin(\\omega_0))^{69\/20}, 0<\\omega_0<\\pi\/2" Then
"\\displaystyle\\sum_{i=1}^ \\infin{(sin(\\omega_0n))^4 \\over (\\pi n)^4}\\approx{1.015 \\over \\pi^4}(sin(\\omega_0))^{69\/20}, 0<\\omega_0<\\pi\/2"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment