The curve is y2=(x+1)(x−1)2y^2=(x+1)(x-1)^2y2=(x+1)(x−1)2
(x+1)(x−1)2≥0⇒(x+1)≥0⇒x≥−1.(x+1)(x-1)^2\geq 0 \Rightarrow (x+1)\geq 0 \Rightarrow x\geq -1 .(x+1)(x−1)2≥0⇒(x+1)≥0⇒x≥−1.
y=±(x+1)(x−1)2y=\pm \sqrt{(x+1)(x-1)^2}y=±(x+1)(x−1)2
The graph of the curve is symmetric about the x-axis.
Graph of function y=(x+1)(x−1)2y= \sqrt{(x+1)(x-1)^2}y=(x+1)(x−1)2 :
y(−1)=0,y(−1)=0.y(-1)= 0, y(-1)= 0.y(−1)=0,y(−1)=0.
y′(x)=3x2+2x−1(x+1)(x−1)2y'(x)= \frac{3x^2+2x-1}{ \sqrt{(x+1)(x-1)^2}}y′(x)=(x+1)(x−1)23x2+2x−1
y′(−1/3)=0;y'(-1/3)= 0 ;y′(−1/3)=0;
y′(1)y'(1)y′(1) - not exist.
The function increases for x in the interval [−1;−13]and[1;∞],(y′>0)[-1;-\frac{1}{3}] and [1;\infty], (y'>0)[−1;−31]and[1;∞],(y′>0)
The function decreasing for x in the interval [−13;1],(y′<0)[-\frac{1}{3};1], (y'<0)[−31;1],(y′<0)
Let us try to find where a function is increasing or decreasing
Graph of the curve :
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments