ANSWER: i. x=-3 and x=7 are the turning points.
ii. The function graph is placed in the attached file.
iii. The function decreases in the interval (-3,7). The function increases in the intervals "\\quad \\quad \\quad \\quad \\left( -\\infty ,-3 \\right) \\quad" and "\\quad \\left( 7,+\\infty \\right) \\quad"
EXPLANATION: "f(x)={ x }^{ 3 }{ -6x }^{ 2 }-63x+124" , "f'(x)=3{ x }^{ 2 }{ -12x-63=3(x-7)(x+3) }" .
In the intervals "(-\\infty ,-3)\\quad ,(7,+\\infty )\\quad f'(x)>0" . Therefore, the function "y=f(x)" increases. In the interval "(-3,7)\\quad \\quad \\quad f'(x)<0" , therefore, the function "y=f(x)" decreases.
The points x=-3 and x=7 are the turning points because at these points the derivative changes the sign.
Comments
Leave a comment