3. Find the two x-intercept of f(x)=x2−3x+2.
Solve the equation x2−3x+2=0
D=b2−4ac=32−4⋅1⋅2=9−8=1;D=1;x1=2a−b+D=23+1=2;x2=2a−b−D=23−1=1.
Answer: b. x = 1, 2
4. Compute the first three derivatives of f(x)=2x5+x23−2x1
Note that (xn)′=nxn−1 and f(x)=2x5+x23−2x1=2x5+x23−21x−1 .
We get
f′(x)=2⋅5x4+23x21−21⋅(−1)x−2==10x4+23x21+21x−2==10x4+23x21+2x21;
f′′(x)=10⋅4x3+23⋅21x−21+21⋅(−2)x−3==40x3+43x−21−x31;
f′′′(x)=40⋅3x2+43⋅(−21)x−23−(−3)x−4==120x2−83x−23+x43.
Answer: d. 10x4−23x21+2x21,40x3−43x−21−x31,120x2−83x−23+x43
Comments