"\\frac{}{}" "\\frac{dy}{dx }= \\frac{12}{ (2x+1)^2}"
"dy= \\frac{12{dx }}{ (2x+1)^2}"
"y= \\int\\frac{12{dx }}{ (2x+1)^2}=12\\int\\frac{{dx }}{ (2x+1)^2}=6\\int\\frac{{d (2x) }}{ (2x+1)^2}=\\\\= 6\\int\\frac{{d (2x+1) }}{ (2x+1)^2}"
"t=2x+1"
"\\\\ 6\\int\\frac{{d (2x+1) }}{ (2x+1)^2}= 6\\int\\frac{{d t }}{ t^2}= \\frac{{-6 }}{ t}+C= \\frac{-6 }{(2x+1) }+C"
"y= - \\frac{6 }{(2x+1) }+C"
The point (1 , 1) lies on the curve:
"y(1)=1 \\Rightarrow -\\frac{6 }{(2*1+1) }+C=1 \\Rightarrow \\\\C=1 -\\frac{-6 }{(2*1+1) } \\Rightarrow \\\\ \n\\Rightarrow C=1 +2 \\Rightarrow C=3"
"y= \\frac{-6 }{2x+1 }+3 \\\\"
"y= \\frac{6x-3 }{2x+1 }"
The coordinates of the point at which the curve intersects the x axis
"\\frac{6x-3 }{2x+1 }=0 \\Rightarrow {6x-3=0 } ( 2x+1 \\neq 0 ) \\Rightarrow x=\\frac{1 }{2 }" .
Answer
The coordinates of the point at which the curve "y= \\frac{6x-3 }{2x+1 }" intersects the x axis:
"x=\\frac{1 }{2 }" .
Comments
Leave a comment