Question #93656
A curve is such that dy/dx = 12/ (2x+1)squared . The point (1 , 1) lies on the curve .find the coordinates of the point at which the curve intersects the x axis
1
Expert's answer
2019-09-02T13:50:44-0400

\frac{}{} dydx=12(2x+1)2\frac{dy}{dx }= \frac{12}{ (2x+1)^2}


dy=12dx(2x+1)2dy= \frac{12{dx }}{ (2x+1)^2}

y=12dx(2x+1)2=12dx(2x+1)2=6d(2x)(2x+1)2==6d(2x+1)(2x+1)2y= \int\frac{12{dx }}{ (2x+1)^2}=12\int\frac{{dx }}{ (2x+1)^2}=6\int\frac{{d (2x) }}{ (2x+1)^2}=\\= 6\int\frac{{d (2x+1) }}{ (2x+1)^2}


t=2x+1t=2x+1

6d(2x+1)(2x+1)2=6dtt2=6t+C=6(2x+1)+C\\ 6\int\frac{{d (2x+1) }}{ (2x+1)^2}= 6\int\frac{{d t }}{ t^2}= \frac{{-6 }}{ t}+C= \frac{-6 }{(2x+1) }+C


y=6(2x+1)+Cy= - \frac{6 }{(2x+1) }+C


The point (1 , 1) lies on the curve:

y(1)=16(21+1)+C=1C=16(21+1)C=1+2C=3y(1)=1 \Rightarrow -\frac{6 }{(2*1+1) }+C=1 \Rightarrow \\C=1 -\frac{-6 }{(2*1+1) } \Rightarrow \\ \Rightarrow C=1 +2 \Rightarrow C=3


y=62x+1+3y= \frac{-6 }{2x+1 }+3 \\


y=6x32x+1y= \frac{6x-3 }{2x+1 }

The coordinates of the point at which the curve intersects the x axis


6x32x+1=06x3=0(2x+10)x=12\frac{6x-3 }{2x+1 }=0 \Rightarrow {6x-3=0 } ( 2x+1 \neq 0 ) \Rightarrow x=\frac{1 }{2 } .


Answer 

The coordinates of the point at which the curve y=6x32x+1y= \frac{6x-3 }{2x+1 } intersects the x axis:

x=12x=\frac{1 }{2 } .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS