dxdy=(2x+1)212
dy=(2x+1)212dx
y=∫(2x+1)212dx=12∫(2x+1)2dx=6∫(2x+1)2d(2x)==6∫(2x+1)2d(2x+1)
t=2x+1
6∫(2x+1)2d(2x+1)=6∫t2dt=t−6+C=(2x+1)−6+C
y=−(2x+1)6+C
The point (1 , 1) lies on the curve:
y(1)=1⇒−(2∗1+1)6+C=1⇒C=1−(2∗1+1)−6⇒⇒C=1+2⇒C=3
y=2x+1−6+3
y=2x+16x−3
The coordinates of the point at which the curve intersects the x axis
2x+16x−3=0⇒6x−3=0(2x+1=0)⇒x=21 .
Answer
The coordinates of the point at which the curve y=2x+16x−3 intersects the x axis:
x=21 .
Comments