y′(x)=h→0limhy(x+h)−y(x)
a)
y′(x)=h→0limhx+h1−x1
Move the h into the numerator functions' denominators
=h→0limhx+h1−hx1
Get common denominators by cross-multiplying.
=h→0limhx+h1xx−hx1x+hx+h
=h→0limhx+hxx−hx+hxx+h
Multiply by the complex conjugate of the resultant numerator as a fraction equal to 1
=h→0limhx(x+h)x−x+h∗x+x+hx+x+h
=h→0limhx(x+h)(x+x+h)x−(x+h)
Thus, you get a cancellation of x in the numerator and h is by itself.
=h→0limhx(x+h)(x+x+h)−h=
=h→0limx(x+h)(x+x+h)−1=2xx−1=2x3/2−1 .
b)
y′(x)=h→0limhx+h+1−x+1
y′(x)=h→0limhx+h+1−x+1==h→0limh(x+h+1+x+1)(x+h+1−x+1)(x+h+1+x+1)==h→0lim=h(x+h+1+x+1)(x+h+1−x−1)==h→0limh(x+h+1+x+1)h==h→0lim(x+h+1+x+1)1==x+1+x+11=2x+11.
--------------------------------------------------------------------------------------------------------------
2.
a)
y=exp(1/2x)+cosxsinx
Find the first derivative
y′=(e1/2x+cosxsinx)′==(e1/2x)+21sin2x)′==21e1/2x+212cos2x==21e1/2x+cos2x
y′=21e1/2x+cos2x .
b)
y=eaxsinx
y′=(y=eaxsinx)′==(eax)′sinx+eax(sinx)′==2eaxaeaxsinx+eax(cosx)=2eaxeax(asinx+2cosx).
y′=2eaxeax(asinx+2cosx) .
3.
a)
dxdy=(cos2xsinxcosx)′=(21cos2xsin2x)′=(21tan2x)′=21cos22x1∗2=cos22x1
dxdy=cos22x1 .
b)
dxdy=(x−1x+1)′=((x−1)2(x+1)′x−1−(x−1)′x+1)==(x−12x+11x−1−2x−11x+1)=x−112x+1x−1−2==x+1(x−1)23−1 =
dxdy==x+1(x−1)23−1 .
Comments