Question #93070
Find the angle of intersection of r=a(1-cos(theta)) and r=2acos(theta)
1
Expert's answer
2019-08-23T11:08:16-0400

1)Let's find θ0\theta_0 an angle of intersection between the curves:

r1(θ)r2(θ)=0=a(1cos(θ))2a(cos(θ))=a(13cos(θ))    θ0=arccos(13)r_1(\theta)-r_2(\theta) = 0 = a(1-cos(\theta))-2a(cos(\theta))=a(1-3cos(\theta)) \implies \theta_0 = arccos(\cfrac{1}{3})

2)Now let's calculate m1m_1 and m2m_2 :

m1=dr1(θ0)dθsin(θ)+r1(θ0)cos(θ0)dr1(θ0)dθ0cos(θ0)r1(θ0)sin(θ0)=sin2(θ0)+r1(θ0)cos(θ0)sin(θ0)cos(θ0)r1(θ0)sin(θ0)=a(223)2+29a229a429a=522m_1=\cfrac{\cfrac{dr_1(\theta_0)}{d\theta}sin(\theta)+r_1(\theta_0)cos(\theta_0)}{\cfrac{dr_1(\theta_0)}{d\theta_0}cos(\theta_0)-r_1(\theta_0)sin(\theta_0)}=\cfrac{sin^2(\theta_0)+r_1(\theta_0)cos(\theta_0)}{sin(\theta_0)cos(\theta_0)-r_1(\theta_0)sin(\theta_0)}=\cfrac{a(\cfrac{2\sqrt2}{3})^2+\cfrac{2}{9}a}{\cfrac{2\sqrt2}{9}a-\cfrac{4\sqrt2}{9}a}=\cfrac{-5\sqrt2}{2}

m2=dr2(θ0)dθsin(θ)+r2(θ0)cos(θ0)dr2(θ0)dθ0cos(θ0)r2(θ0)sin(θ0)=2sin2(θ0)+r2(θ0)cos(θ0)2sin(θ0)cos(θ0)r2(θ0)sin(θ0)=2a(223)2+29a429a429a=728m_2=\cfrac{\cfrac{dr_2(\theta_0)}{d\theta}sin(\theta)+r_2(\theta_0)cos(\theta_0)}{\cfrac{dr_2(\theta_0)}{d\theta_0}cos(\theta_0)-r_2(\theta_0)sin(\theta_0)}=\cfrac{-2sin^2(\theta_0)+r_2(\theta_0)cos(\theta_0)}{-2sin(\theta_0)cos(\theta_0)-r_2(\theta_0)sin(\theta_0)}=\cfrac{-2a(\cfrac{2\sqrt2}{3})^2+\cfrac{2}{9}a}{\cfrac{-4\sqrt2}{9}a-\cfrac{4\sqrt2}{9}a}=\cfrac{-7\sqrt2}{8}

Then angle α\alpha of intersection between the two curves is:

α=arctanm1m21+m1m2=arctan13288616=arctan13243\alpha=arctan|\cfrac{m_1-m_2}{1+m_1m_2}|=arctan|\cfrac{-\cfrac{13\sqrt2}{8}}{\cfrac{86}{16}}| =arctan|\cfrac{-13\sqrt2}{43}|

Answer: α=arctan13243=arctan(13243).\alpha=arctan|\cfrac{-13\sqrt2}{43}|=arctan(\cfrac{13\sqrt2}{43}).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS