The curve y 2 = ( x + 1 ) ( x − 1 ) 2 y^2 = (x +1) (x −1)^2 y 2 = ( x + 1 ) ( x − 1 ) 2 is well defined for
( x + 1 ) ( x − 1 ) 2 ≥ 0 ⇒ ( x + 1 ) ≥ 0 ⇒ x ≥ − 1 (x +1) (x −1)^2\geq 0 \Rightarrow (x +1)\geq 0 \Rightarrow x \geq -1 \\ ( x + 1 ) ( x − 1 ) 2 ≥ 0 ⇒ ( x + 1 ) ≥ 0 ⇒ x ≥ − 1
All powers of 𝑦 in the equation are even
( − y ) 2 − ( x + 1 ) ( x − 1 ) 2 = y 2 − ( x + 1 ) ( x − 1 ) 2 (-y) ^2 - (x +1) (x −1)^2= y^2 - (x +1) (x −1)^2 ( − y ) 2 − ( x + 1 ) ( x − 1 ) 2 = y 2 − ( x + 1 ) ( x − 1 ) 2
Therefore, curve is symmetrical about 𝑥- axis.
A curve does not pass through the origin:
A curve does not pass through the origin:
0 2 = ( 0 + 1 ) ( 0 − 1 ) 2 0 = 1 − F a l s e 0^2 = (0 +1) (0 −1)^2 \\
0=1- False 0 2 = ( 0 + 1 ) ( 0 − 1 ) 2 0 = 1 − F a l se
Intersection with 𝑥- axis: Put 𝑦 = 0 in the equation of the curve and solve the resulting equation
0 2 = ( x + 1 ) ( x − 1 ) 2 0^2 = (x +1) (x −1)^2 0 2 = ( x + 1 ) ( x − 1 ) 2
( x + 1 ) = 0 ⇒ x 1 = − 1 ( x − 1 ) 2 = 0 ⇒ x 2 = 1 (x +1)=0 \Rightarrow x_1=-1\\
(x −1)^2=0 \Rightarrow x_2=1 ( x + 1 ) = 0 ⇒ x 1 = − 1 ( x − 1 ) 2 = 0 ⇒ x 2 = 1
Intersection with 𝑥- axis: 𝑃𝑜𝑖𝑛𝑡s (-1, 0) and (-1, 0).
Intersection with 𝑦- axis: Put 𝑥 = 0 in the equation of the curve and solve the resulting equation:
y 2 = ( 0 + 1 ) ( 0 − 1 ) 2 y 2 = 1 ∗ 1 ⇒ y = ± 1. y^2 = (0 +1) (0 −1)^2\\
y^2 =1*1 \Rightarrow y=\pm 1. y 2 = ( 0 + 1 ) ( 0 − 1 ) 2 y 2 = 1 ∗ 1 ⇒ y = ± 1.
Intersection with y - axis: 𝑃𝑜𝑖𝑛𝑡s (0,-1) and (0,1).
y 2 = ( x + 1 ) ( x − 1 ) 2 y^2 = (x +1) (x −1)^2 y 2 = ( x + 1 ) ( x − 1 ) 2 , x ≥ − 1 x \geq -1 x ≥ − 1 .
So,
y = ± ( x + 1 ) ( x − 1 ) 2 y = \pm\sqrt{(x +1) (x −1)^2} y = ± ( x + 1 ) ( x − 1 ) 2 .
Consider the case
y = ( x + 1 ) ( x − 1 ) 2 y = \sqrt{(x +1) (x −1)^2} y = ( x + 1 ) ( x − 1 ) 2 (1)
y = ( x + 1 ) ∣ x − 1 ∣ y = \sqrt{(x +1)} |x −1| y = ( x + 1 ) ∣ x − 1∣
y = { ( x − 1 ) ( x + 1 ) , if x ≥ 1 − ( x − 1 ) ( x + 1 ) , if − 1 ≤ x < 1 y= \begin{cases}
(x −1)\sqrt{(x +1)} , &\text{if } x\geq 1\\
- (x −1)\sqrt{(x +1)}, &\text{if } -1\leq x< 1
\end{cases} y = { ( x − 1 ) ( x + 1 ) , − ( x − 1 ) ( x + 1 ) , if x ≥ 1 if − 1 ≤ x < 1
First derivative:
d y d x = { ( x + 1 ) + ( x − 1 ) 2 ( x + 1 ) , if x ≥ 1 − ( ( x + 1 ) + ( x − 1 ) 2 ( x + 1 ) ) , if − 1 < x < 1 \frac {dy}{ dx}= \begin{cases}
\sqrt{(x +1)}+ \frac {(x −1)}{ 2\sqrt{(x +1)}} , &\text{if } x\geq 1\\
- (\sqrt{(x +1)}+ \frac {(x −1)}{ 2\sqrt{(x +1)}}), &\text{if } -1 < x< 1
\end{cases} d x d y = ⎩ ⎨ ⎧ ( x + 1 ) + 2 ( x + 1 ) ( x − 1 ) , − ( ( x + 1 ) + 2 ( x + 1 ) ( x − 1 ) ) , if x ≥ 1 if − 1 < x < 1
d y d x = { 3 x + 1 2 x + 1 , if x ≥ 1 − 3 x + 1 2 x + 1 , if − 1 ≤ x < 1 \frac {dy}{ dx}= \begin{cases}
\frac {3x +1}{ 2\sqrt{x +1}} , &\text{if } x\geq 1\\
- \frac {3x +1}{ 2\sqrt{x +1}}, &\text{if } -1\leq x< 1
\end{cases} d x d y = { 2 x + 1 3 x + 1 , − 2 x + 1 3 x + 1 , if x ≥ 1 if − 1 ≤ x < 1
If x = − 1 3 , 𝑑 𝑦 𝑑 𝑥 = 0 , x =-\frac {1}{3}, \frac {𝑑𝑦}{𝑑𝑥} = 0, x = − 3 1 , d x d y = 0 ,
If x > − 1 3 , 𝑑 𝑦 𝑑 𝑥 < 0 , x> -\frac {1}{3}, \frac {𝑑𝑦}{𝑑𝑥} < 0, x > − 3 1 , d x d y < 0 , y -decreases,
If − 1 ≤ x < − 1 3 , 𝑑 𝑦 𝑑 𝑥 > 0 -1\leq x< -\frac {1}{3}, \frac {𝑑𝑦}{𝑑𝑥} > 0 − 1 ≤ x < − 3 1 , d x d y > 0 , y -increases,
x ≥ 1 , 𝑑 𝑦 𝑑 𝑥 > 0 x \geq 1 , \frac {𝑑𝑦}{𝑑𝑥} > 0 x ≥ 1 , d x d y > 0 - y -increases,
In point x = -1/3 , the derivative of the function changes the sign from (+) to (-). Therefore, the point x = -1/3 is the maximum point.
Second derivative
d 2 y d x 2 = − 3 x + 5 4 ( x + 1 ) 3 4 \frac {d^2y}{ dx^2}= -\frac {3x+5}{ 4(x+1)^ \frac {3}{ 4}} d x 2 d 2 y = − 4 ( x + 1 ) 4 3 3 x + 5
d 2 y d x 2 = { 3 x + 5 4 ( x + 1 ) 3 2 , if x ≥ 1 − 3 x + 5 4 ( x + 1 ) 3 2 , if − 1 < x < 1 \frac {d^2y}{ dx^2}=\begin{cases}
\frac {3x+5}{ 4(x+1)^ \frac {3}{ 2}} , &\text{if } x\geq 1\\
- \frac {3x+5}{ 4(x+1)^ \frac {3}{2}}, &\text{if } -1< x< 1
\end{cases} d x 2 d 2 y = ⎩ ⎨ ⎧ 4 ( x + 1 ) 2 3 3 x + 5 , − 4 ( x + 1 ) 2 3 3 x + 5 , if x ≥ 1 if − 1 < x < 1
d 2 y d x 2 < 0 , − 1 < x ≤ 1 \frac {d^2y}{ dx^2} < 0 , -1< x \leq 1 d x 2 d 2 y < 0 , − 1 < x ≤ 1 - the graph concaves down.
d 2 y d x 2 > 0 , x > 1 \frac {d^2y}{ dx^2} > 0 , x> 1 d x 2 d 2 y > 0 , x > 1 - the graph concaves up.
Graph of functions (1) :
Given that curve is symmetrical about 𝑥- axis :
Comments