QUESTION 5
Since the condition of the question says that we can use the mean value theorem on [ 4 , 6 ] [4,6] [ 4 , 6 ] , we will not prove it, but only use the formula
f ′ ( c ) = f ( b ) − f ( a ) b − a f'(c)=\frac{f(b)-f(a)}{b-a} f ′ ( c ) = b − a f ( b ) − f ( a )
( More information: https://en.wikipedia.org/wiki/Mean_value_theorem )
In our case,
f ( x ) = x − 4 x − 3 → { f ( 6 ) = 6 − 4 6 − 3 = 2 3 f ( 4 ) = 4 − 4 4 − 3 = 0 f ′ ( x ) = ( x − 4 ) ′ ( x − 3 ) − ( x − 4 ) ( x − 3 ) ′ ( x − 3 ) 2 = 1 ( x − 3 ) 2 f(x)=\frac{x-4}{x-3}\rightarrow\begin{cases}
f(6)=\displaystyle\frac{6-4}{6-3}=\frac{2}{3}\\[0.5cm]
f(4)=\displaystyle\frac{4-4}{4-3}=0\\[0.5cm]
f'(x)=\displaystyle\frac{(x-4)'(x-3)-(x-4)(x-3)'}{(x-3)^2}=\frac{1}{(x-3)^2}
\end{cases} f ( x ) = x − 3 x − 4 → ⎩ ⎨ ⎧ f ( 6 ) = 6 − 3 6 − 4 = 3 2 f ( 4 ) = 4 − 3 4 − 4 = 0 f ′ ( x ) = ( x − 3 ) 2 ( x − 4 ) ′ ( x − 3 ) − ( x − 4 ) ( x − 3 ) ′ = ( x − 3 ) 2 1 Then,
f ′ ( c ) = f ( 6 ) − f ( 4 ) 6 − 4 → 1 ( c − 3 ) 2 = 2 3 − 0 2 → ( c − 3 ) 2 = 3 ∣ c − 3 ∣ = 3 → c = 3 + 3 o r c = 3 − 3 f'(c)=\frac{f(6)-f(4)}{6-4}\rightarrow
\frac{1}{(c-3)^2}=\frac{\displaystyle\frac{2}{3}-0}{2}\rightarrow (c-3)^2=3\\[0.5cm]
|c-3|=\sqrt{3}\rightarrow c=3+\sqrt{3}\,\,\,{or}\,\,\,c=3-\sqrt{3} f ′ ( c ) = 6 − 4 f ( 6 ) − f ( 4 ) → ( c − 3 ) 2 1 = 2 3 2 − 0 → ( c − 3 ) 2 = 3 ∣ c − 3∣ = 3 → c = 3 + 3 or c = 3 − 3 Since c ∈ [ 4 , 6 ] c\in[4,6] c ∈ [ 4 , 6 ] , then
c = 3 + 3 \boxed{c=3+\sqrt{3}} c = 3 + 3 ANSWER
d . c = 3 ± 3 \boxed{d.\,\,\,c=3\pm\sqrt{3}} d . c = 3 ± 3 Hint: We choose this answer, since only it contains the correct answer, although it also has an extra root.
QUESTION 6
Since the condition of the question is only f ( x ) = 9 − x 2 f(x)=\sqrt{9-x^2} f ( x ) = 9 − x 2 , and there is no continuation, then I cannot answer this question.
Comments
Leave a comment