9.Evaluate the \\(\\frac{d ^{3}f}{d x^{3}}\\) of \\(f(x)= sin (x) cos (x)\\)
a.\\(\\frac{d ^{3}f}{d x^{3}}=-2\\left(Cos^{2} (x)+sin^{2} (x)\\right)\\)
b.\\(f\'(x)=5x^{4}-\\frac{1}{2}x^{\\frac{1}{2}}+ \\frac{1}{2x^{2}}, 20x^{3}-\\frac{3}{4}x^{-\\frac{1}{2}}- \\frac{1}{x^{1}}, 100x^{2}-\\frac{3}{8}x^{-\\frac{3}{2}}+ \\frac{3}{x^{4}}\\)
c.\\(\\frac{d ^{3}f}{d x^{3}}=-4\\left(cos^{2} (x)-sin^{2} (x)\\right)\\)
d.\\(\\frac{d ^{3}f}{d x^{3}}=-4\\left(tan^{2} (x)-cos^{2} (x)\\right)\\)
10.Determine whether the Rolle\'s theorem can be applied to \\(f\\) on the closed interval [a, b] . If can be applied, Find the values of \\(c\\) in open interval (a, b) such that \\(f\'( c) = 0\\), \\(f(x)=\\frac{x^{2}-2x-3}{x+2}, [-1, 3]
a.\\(c=-1\\pm\\sqrt(5)\\)
b.\\(c=-2\\pm\\sqrt(5)\\)
c.\\(c=-2\\pm\\sqrt(5)\\)
d.\\(c=-2\\pm 2\\sqrt(5)\\)
1
Expert's answer
2019-09-18T10:06:37-0400
1.
dxdfsin(x)cos(x)=cos2x−sin2x=cos2x
dx2d2sin(x)cos(x)=dxdcos2x=−2sin2x
dx3df3=dxd(−2sin2x)=−4cos2x=−4(cos2(x)−sin2(x))
answer C
2
b or c
f(x)=x+2x2−2x−3 is continous and differentiable on [-1;3]
f(−1)=0=f(3)
Hence, according to Rolle's theorem, there's a c∈[−1;3] such that f'(c)=0
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments