Let length of the container = x = 20, width of the container = y, and height of the container = z.
Volume of the container "V=x\\cdot y\\cdot z=3000,\\ y\\cdot z=3000\/20=150"
The surface of the container "S=x\\cdot y+2(x+y)z=20y+2x\\cdot z+2\\cdot y\\cdot z="
"20y+40\\cdot150\/y+300=20y+6000\/y+300"
Using inequality of arithmetic and geometric means
"20y+6000\/y\\ge 2\\sqrt{20y\\cdot 6000\/y}=400\\sqrt{3}" , and equality possible when "20y=6000\/y, y^2=300, y=\\sqrt{300}" , therefor the area of the container is minimal when
"y=\\sqrt{300}=10\\sqrt{3},\\ z=150\/(10\\sqrt{3})=5\\sqrt{3}" .
Answer: dimensions of the container that has the least surface area are length = 20 cm, width = "10\\sqrt{3}" cm, height = "5\\sqrt{3}" cm.
Comments
Leave a comment