Answer to Question #335067 in Calculus for Johannes Steven

Question #335067

Find the Maclaurin series for the function f(x) = square root of

(x2+2-x)5

1
Expert's answer
2022-04-29T13:14:19-0400

p0(0)=f(0)=25=32p_0(0)=f(0)=\sqrt{2^5}=\sqrt{32}

f(x)=5(2x1)(x2x+2)3/22f'(x)=\frac{5(2x-1)(x^2-x+2)^{3/2}}{2}

p1(0)=f(0)+f(0)x=32582xp_1(0)=f(0)+f'(0)x=\sqrt{32}-\frac{5\sqrt{8}}{2}x

f(x)=5(x2x+2)3/2+15(2x1)2x2x+24f''(x)=5(x^2-x+2)^{3/2}+\frac{15(2x-1)^2\sqrt{x^2-x+2}}{4}

p2=32582x+582x2+1528x2p_2=\sqrt{32}-\frac{5\sqrt{8}}{2}x+ \frac{5\sqrt{8}}{2}x^2+\frac{15\sqrt{2}}{8}x^2




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment