Find the Maclaurin series for the function f(x) = square root of
(x2+2-x)5
p0(0)=f(0)=25=32p_0(0)=f(0)=\sqrt{2^5}=\sqrt{32}p0(0)=f(0)=25=32
f′(x)=5(2x−1)(x2−x+2)3/22f'(x)=\frac{5(2x-1)(x^2-x+2)^{3/2}}{2}f′(x)=25(2x−1)(x2−x+2)3/2
p1(0)=f(0)+f′(0)x=32−582xp_1(0)=f(0)+f'(0)x=\sqrt{32}-\frac{5\sqrt{8}}{2}xp1(0)=f(0)+f′(0)x=32−258x
f′′(x)=5(x2−x+2)3/2+15(2x−1)2x2−x+24f''(x)=5(x^2-x+2)^{3/2}+\frac{15(2x-1)^2\sqrt{x^2-x+2}}{4}f′′(x)=5(x2−x+2)3/2+415(2x−1)2x2−x+2
p2=32−582x+582x2+1528x2p_2=\sqrt{32}-\frac{5\sqrt{8}}{2}x+ \frac{5\sqrt{8}}{2}x^2+\frac{15\sqrt{2}}{8}x^2p2=32−258x+258x2+8152x2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment