Find the Maclaurin series for the function f(x) = square root of
(x2+2-x)5
"p_0(0)=f(0)=\\sqrt{2^5}=\\sqrt{32}"
"f'(x)=\\frac{5(2x-1)(x^2-x+2)^{3\/2}}{2}"
"p_1(0)=f(0)+f'(0)x=\\sqrt{32}-\\frac{5\\sqrt{8}}{2}x"
"f''(x)=5(x^2-x+2)^{3\/2}+\\frac{15(2x-1)^2\\sqrt{x^2-x+2}}{4}"
"p_2=\\sqrt{32}-\\frac{5\\sqrt{8}}{2}x+ \\frac{5\\sqrt{8}}{2}x^2+\\frac{15\\sqrt{2}}{8}x^2"
Comments
Leave a comment