Question #334919

Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Then find the area of the region.

2y = 4sqrt(x), y=5 and 2x + 2y =6.



1
Expert's answer
2022-04-29T10:10:35-0400
2x+2y=6=>x=y+32x+2y=6=>x=-y+3

2y=4x=>x=14y2,y02y = 4\sqrt{x}=>x=\dfrac{1}{4}y^2, y\ge0

y+3=14y2,y0-y+3=\dfrac{1}{4}y^2, y\ge0

y2+4y12=0,y0y^2+4y-12=0, y\ge0

(y2)(y+6)=0,y0(y-2)(y+6)=0, y\ge0

Then y=2.y=2.


Area=A=25(14y2(y+3))dyArea=A=\displaystyle\int_{2}^{5}(\dfrac{1}{4}y^2-(-y+3))dy

=[112y3+12y23y]52=\bigg[\dfrac{1}{12}y^3+\dfrac{1}{2}y^2-3y\bigg]\begin{matrix} 5 \\ 2 \end{matrix}

=12512+252158122+6=\dfrac{125}{12}+\dfrac{25}{2}-15-\dfrac{8}{12}-2+6

=454(units2)=11.25(units2)=\dfrac{45}{4}({units}^2)=11.25({units}^2)

Area=11.25Area=11.25 square units.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS