Question #332078

1. Let f be the function defined by

f (x) = x2

-------------

(2x + 1)2

:

(a) Determine the vertical and horizontal asymptotes (show all limits). (4)

(b) Use the sign pattern for f ' (x) to determine

(i) the interval(s) over which f rises and where it falls; (4)

(ii) the local extrema. (2)

(c) Use the sign pattern for f " (x) to determine

(i) where the graph of f is concave up and where it is concave down. (4)

(ii) the inflection points (if any) (2)


1
Expert's answer
2022-04-22T14:00:44-0400

f(x)=x2(2x+1)2f(x)=\frac{x^2}{(2x+1)^2} , x12x\neq -\frac{1}2


(a) Vertical asymptotes: (2x+1)2=0,2x+1=0,x=12(2x+1)^2=0,\quad 2x+1=0,\quad x=-\frac{1}{2} .

limx1/2x2(2x+1)2=,\lim\limits_{x\rightarrow -1/2}\frac{x^2}{(2x+1)^2}=\infty ,\quad x=12x=-\frac{1}{2} is a vertical asymptote.


Horizontal asymptotes: limxx2(2x+1)2=limxx24x2+4x+1=limx14+4/x+1/x2=14\lim\limits_{x\rightarrow\infty}\frac{x^2}{(2x+1)^2}= \lim\limits_{x\rightarrow\infty}\frac{x^2}{4x^2+4x+1}= \lim\limits_{x\rightarrow\infty}\frac{1}{4+4/x+1/x^2}=\frac{1}{4}

y=14y=\frac{1}{4} is a horizontal asymptote.

(b) f(x)=2x(2x+1)24(2x+1)x2(2x+1)2=2x(2x+1)3f^\prime (x)=\frac{2x\cdot (2x+1)^2-4(2x+1)\cdot x^2}{(2x+1)^2}=\frac{2x}{(2x+1)^3}


(i) If 12<x<0-\tfrac{1}{2}<x<0 , then f(x)<0f^\prime (x)<0 and f(x)f(x) falls.

If x<12x<-\frac{1}{2} or x0x\geq 0 , then f(x)>0f^\prime (x)>0 and f(x)f(x) rises.


(ii) f(x)=0f(x)=0 , 2x(2x+1)3=0\frac{2x}{(2x+1)^3}=0 , x=0x=0 .

The point x=0x=0 is a local minimum (if x<0x<0 , then ff falls; if x>0x>0 , then ff rises).


(c) f(x)=2(2x+1)36(2x+1)22x(2x+1)6=28x(2x+1)4f^{\prime \prime}(x)=\frac{2\cdot (2x+1)^3-6(2x+1)^2\cdot 2x}{(2x+1)^6}=\frac{2-8x}{(2x+1)^4}


(i) If x<14x<\frac{1}{4} , then f(x)>0f^{\prime\prime}(x)>0 and f(x)f(x) is concave up.

If x>14x>\frac{1}{4} , then f(x)<0f^{\prime\prime}(x)<0 and f(x)f(x) is concave down.


(ii) f(x)=0,  28x(2x+1)4=0,  x=14f^{\prime\prime}(x)=0,\ \ \frac{2-8x}{(2x+1)^4}=0,\ \ x=\frac{1}{4} .

The point x=14x=\frac{1}{4} is an inflection point (if x<14x<\frac{1}{4} , then ff is concave up; if x>14x>\frac{1}{4} , then ff is concave down).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS