f(x)=(2x+1)2x2 , x=−21
(a) Vertical asymptotes: (2x+1)2=0,2x+1=0,x=−21 .
x→−1/2lim(2x+1)2x2=∞, x=−21 is a vertical asymptote.
Horizontal asymptotes: x→∞lim(2x+1)2x2=x→∞lim4x2+4x+1x2=x→∞lim4+4/x+1/x21=41
y=41 is a horizontal asymptote.
(b) f′(x)=(2x+1)22x⋅(2x+1)2−4(2x+1)⋅x2=(2x+1)32x
(i) If −21<x<0 , then f′(x)<0 and f(x) falls.
If x<−21 or x≥0 , then f′(x)>0 and f(x) rises.
(ii) f(x)=0 , (2x+1)32x=0 , x=0 .
The point x=0 is a local minimum (if x<0 , then f falls; if x>0 , then f rises).
(c) f′′(x)=(2x+1)62⋅(2x+1)3−6(2x+1)2⋅2x=(2x+1)42−8x
(i) If x<41 , then f′′(x)>0 and f(x) is concave up.
If x>41 , then f′′(x)<0 and f(x) is concave down.
(ii) f′′(x)=0, (2x+1)42−8x=0, x=41 .
The point x=41 is an inflection point (if x<41 , then f is concave up; if x>41 , then f is concave down).
Comments