1. Let f be the function defined by
f (x) = x2
-------------
(2x + 1)2
:
(a) Determine the vertical and horizontal asymptotes (show all limits). (4)
(b) Use the sign pattern for f ' (x) to determine
(i) the interval(s) over which f rises and where it falls; (4)
(ii) the local extrema. (2)
(c) Use the sign pattern for f " (x) to determine
(i) where the graph of f is concave up and where it is concave down. (4)
(ii) the inflection points (if any) (2)
"f(x)=\\frac{x^2}{(2x+1)^2}" , "x\\neq -\\frac{1}2"
(a) Vertical asymptotes: "(2x+1)^2=0,\\quad 2x+1=0,\\quad x=-\\frac{1}{2}" .
"\\lim\\limits_{x\\rightarrow -1\/2}\\frac{x^2}{(2x+1)^2}=\\infty ,\\quad" "x=-\\frac{1}{2}" is a vertical asymptote.
Horizontal asymptotes: "\\lim\\limits_{x\\rightarrow\\infty}\\frac{x^2}{(2x+1)^2}= \\lim\\limits_{x\\rightarrow\\infty}\\frac{x^2}{4x^2+4x+1}= \\lim\\limits_{x\\rightarrow\\infty}\\frac{1}{4+4\/x+1\/x^2}=\\frac{1}{4}"
"y=\\frac{1}{4}" is a horizontal asymptote.
(b) "f^\\prime (x)=\\frac{2x\\cdot (2x+1)^2-4(2x+1)\\cdot x^2}{(2x+1)^2}=\\frac{2x}{(2x+1)^3}"
(i) If "-\\tfrac{1}{2}<x<0" , then "f^\\prime (x)<0" and "f(x)" falls.
If "x<-\\frac{1}{2}" or "x\\geq 0" , then "f^\\prime (x)>0" and "f(x)" rises.
(ii) "f(x)=0" , "\\frac{2x}{(2x+1)^3}=0" , "x=0" .
The point "x=0" is a local minimum (if "x<0" , then "f" falls; if "x>0" , then "f" rises).
(c) "f^{\\prime \\prime}(x)=\\frac{2\\cdot (2x+1)^3-6(2x+1)^2\\cdot 2x}{(2x+1)^6}=\\frac{2-8x}{(2x+1)^4}"
(i) If "x<\\frac{1}{4}" , then "f^{\\prime\\prime}(x)>0" and "f(x)" is concave up.
If "x>\\frac{1}{4}" , then "f^{\\prime\\prime}(x)<0" and "f(x)" is concave down.
(ii) "f^{\\prime\\prime}(x)=0,\\ \\ \\frac{2-8x}{(2x+1)^4}=0,\\ \\ x=\\frac{1}{4}" .
The point "x=\\frac{1}{4}" is an inflection point (if "x<\\frac{1}{4}" , then "f" is concave up; if "x>\\frac{1}{4}" , then "f" is concave down).
Comments
Leave a comment