Find the length of the arc with the curve
y = 2x ^ (3/2) between x = 1/3 and x = 7
Length of the arc: "L= \\int_a^b \\sqrt{1+(y')^2}dx"
"y = 2x^{3\/2}"
"y' = 3x^{1\/2}"
"(y')^2 = 9x"
"L = \\int_{1\/3}^7 \\sqrt{1+9x}dx =[t = 1+9x, dt=9dx, dx= \\cfrac{dt}{9}, \\cfrac{1}{3} \\rightarrow4, 7 \\rightarrow 64] =\\cfrac{1}{9} \\int_4^{64}\\sqrt{t} dt =\\cfrac{2}{27} t^{3\/2}|_4^{64} = \\cfrac{2}{27}(64^{3\/2} - 4^{3\/2}) = \\cfrac{2}{27}(512-8) =\\cfrac{2}{3}56 = \\cfrac{112}{3}"
Comments
Leave a comment