Find the length of the arc with the curve
y = 2x ^ (3/2) between x = 1/3 and x = 7
Length of the arc: L=∫ab1+(y′)2dxL= \int_a^b \sqrt{1+(y')^2}dxL=∫ab1+(y′)2dx
y=2x3/2y = 2x^{3/2}y=2x3/2
y′=3x1/2y' = 3x^{1/2}y′=3x1/2
(y′)2=9x(y')^2 = 9x(y′)2=9x
L=∫1/371+9xdx=[t=1+9x,dt=9dx,dx=dt9,13→4,7→64]=19∫464tdt=227t3/2∣464=227(643/2−43/2)=227(512−8)=2356=1123L = \int_{1/3}^7 \sqrt{1+9x}dx =[t = 1+9x, dt=9dx, dx= \cfrac{dt}{9}, \cfrac{1}{3} \rightarrow4, 7 \rightarrow 64] =\cfrac{1}{9} \int_4^{64}\sqrt{t} dt =\cfrac{2}{27} t^{3/2}|_4^{64} = \cfrac{2}{27}(64^{3/2} - 4^{3/2}) = \cfrac{2}{27}(512-8) =\cfrac{2}{3}56 = \cfrac{112}{3}L=∫1/371+9xdx=[t=1+9x,dt=9dx,dx=9dt,31→4,7→64]=91∫464tdt=272t3/2∣464=272(643/2−43/2)=272(512−8)=3256=3112
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments