Define:
x - length of the rectangle (x>0)
2−x - height of the rectangle (x>0)
Area of the rectangle:
S(x)=x⋅2−x
S’(x)=2−x−x⋅2−x⋅ln2=0
x=ln21
S’(2ln21)=2−2ln21(1−2ln21⋅ln2)>0
S’(ln22)=2−ln22(1−ln22⋅ln2)<0
So x=ln21 corresponds to maximum of the function S(x) .
Answer:
ln21 - length of the rectangle
2−ln21 - height of the rectangle
Comments
Leave a comment