Answer to Question #331691 in Calculus for Olga

Question #331691

Find the derivative of the function



P(x)=ln ⁡[ (4x + 1)^3 / (2x − 5)^4 ]


is


a. −4(2x−17) / (4x+1)(2x−5)

b.−4(2x−17) / (4x+1)

c. 4(−2x−17) / (4x+1)(2x−5)

d. (−2x−17) / (4x+1)(2x−5)



1
Expert's answer
2022-04-25T18:00:46-0400

P(x)=(ln[(4x+1)3/(2x5)4])=1(4x+1)3/(2x5)4((4x+1)3/(2x5)4)=(2x5)4(4x+1)312(4x+1)2(2x5)48(2x5)3(4x+1)3(2x5)8=12(2x5)8(4x+1)(4x+1)(2x5)=24x6032x8(4x+1)(2x5)=4(2x17)(4x+1)(2x5)P’(x)=(ln ⁡[ (4x + 1)^3 / (2x − 5)^4 ])’= \frac{1}{(4x + 1)^3 / (2x − 5)^4}*((4x + 1)^3 / (2x − 5)^4)’=\frac{(2x-5)^4}{(4x+1)^3}*\frac{12(4x+1)^2*(2x-5)^4-8(2x-5)^3*(4x+1)^3}{(2x-5)^8}=\frac{12(2x-5)-8(4x+1)}{(4x+1)(2x-5)}=\frac{24x-60-32x-8}{(4x+1)(2x-5)}=\frac{4(-2x-17)}{(4x+1)(2x-5)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment