Find the area of the surface generated by revolving the curve y=√25-x², from x = - 2 to x = 3 , about the x-axis.
A=2π∫aby⋅1+(y′)2A = 2 \pi \int_a^by \cdot \sqrt{1+(y')^2}A=2π∫aby⋅1+(y′)2 dx
y=25−x2,y′=−x25−x2y = \sqrt{25-x^2}, y' = -\cfrac{x}{\sqrt{25-x^2}}y=25−x2,y′=−25−x2x
A=2π∫−23(25−x2⋅1+x225−x2)dx==2π∫−23(25−x2⋅2525−x2)dx=2π∫−235dx=2π⋅5x∣−23==2π(15+10)=50πA = 2 \pi \int_{-2}^3 (\sqrt{25-x^2} \cdot\sqrt{1 + \cfrac{x^2}{25-x^2}})dx =\\ =2\pi \int_{-2}^3(\sqrt{25-x^2} \cdot \sqrt{\cfrac{25}{25-x^2}})dx = 2\pi \int_{-2}^3 5 dx = 2\pi \cdot5x|_{-2}^3 = \\ =2\pi (15+10) = 50\piA=2π∫−23(25−x2⋅1+25−x2x2)dx==2π∫−23(25−x2⋅25−x225)dx=2π∫−235dx=2π⋅5x∣−23==2π(15+10)=50π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment