.Find the minimum value of with the constraints `xy+yz+zx=3
"Let F=(x^2+y^2+z^2) +\\lambda(xy+yz+zx)=0"
"F_x=0, F_y=0, F_z=0"
"2x+\\lambda(y+z)=0,2y+\\lambda(x+z)=0,\n2z+\\lambda(x+y)=0"
"\\lambda=\\frac{-2x}{y+z},\\lambda=\\frac{-2y}{x+z},\\lambda=\\frac{-2z}{x+y}"
Equating the equations ,we have,
"\\frac{-2x}{y+z},=\\frac{-2y}{x+z},=\\frac{-2z}{x+y}"
Taking,
"\\frac{x}{y+z},=\\frac{y}{x+z}"
We have, "(x-y)(x+y+z)=0"
"x=y or x+y+z=0"
we must have x=y since x+y+z cannot be 0
Suppose x+y+z=0, squaring this we have,
"(x^2+y^2+z^2)+2(xy+yz+zx)=0"
Comments
Leave a comment