Please help me with this question. Consider the surfaces in R^3 defined by the equations f(x,y)= 2 sqrt(x^2 + y^2) and g(x,y)= 1 + x^2 + y^2. (a) what shapes are described by f,g and their intersection?. (b) Give a parametric equation describing the intersection
(a) "z=f\\left( x,y \\right) =2\\sqrt{x^2+y^2}" describes a cone, "z=g\\left( x,y \\right) =1+x^2+y^2" describes a parabaloid.
The intersection:
"\\left\\{ \\begin{array}{c} z=2\\sqrt{x^2+y^2}\\\\ z=1+x^2+y^2\\\\\\end{array} \\right. \\Rightarrow \\left\\{ \\begin{array}{c} z=2\\sqrt{x^2+y^2}\\\\ 2\\sqrt{x^2+y^2}=1+x^2+y^2\\\\\\end{array} \\right. \\Rightarrow \\left\\{ \\begin{array}{c} z=2\\sqrt{x^2+y^2}\\\\ \\left( \\sqrt{x^2+y^2}-1 \\right) ^2=0\\\\\\end{array} \\right. \\Rightarrow \\\\\\Rightarrow \\left\\{ \\begin{array}{c} x^2+y^2=1\\\\ z=2\\\\\\end{array} \\right."
This is a circle.
(b)
"x=\\cos \\varphi ,y=\\sin \\varphi ,z=2,0\\leqslant \\varphi \\leqslant 2\\pi"
Comments
Leave a comment