Evaluate ∫c 𝐹. 𝑑𝑟,where 𝐹 = 𝑋^2 − 𝑌^2𝑖 + 𝑥𝑦𝑗 and curve 𝐶 is the arc of the curve 𝑦 = 𝑋^3 from (0,0) to (2,8).
"\\int_C{Fdr}=\\left[ \\begin{array}{c}\ty=x^3\\\\\tdy=3x^2dx\\\\\tx:0\\rightarrow 2\\\\\tF_1=x^2-y^2=x^2-x^6\\\\\tF_2=xy=x^4\\\\\\end{array} \\right] =\\int_0^2{\\left( x^2-x^6 \\right) dx+x^4\\cdot 3x^2dx}=\\\\=\\left( \\frac{x^3}{3}+\\frac{2x^7}{7} \\right) |_{0}^{2}=\\frac{824}{21}"
Comments
Leave a comment