Answer to Question #313844 in Calculus for Muncher

Question #313844

y=(x-1)√x²-2x+2

1
Expert's answer
2022-03-19T02:40:23-0400

Solution

y=(x1)x22x+2y=(x-1)\sqrt{x^2-2x+2}


dydx=(x1)ddxx22x+2+sqrtx22x+2ddx(x1)\frac{dy}{dx}=(x-1)\frac{d}{dx}\sqrt{x^2-2x+2}+sqrt{x^2-2x+2}\frac{d}{dx}(x-1)


dydx=(x1)12(x22x+2)12ddx(x22x+2)+x22x+2(10)\frac{dy}{dx}=(x-1)\frac{1}{2}(x^2-2x+2)^{-\frac{1}{2}}\frac{d}{dx}(x^2-2x+2)+\sqrt{x^2-2x+2}(1-0)


dydx=(x1)12x22x+2(2x2)+x22x+2\frac{dy}{dx}=(x-1)\frac{1}{2\sqrt{x^2-2x+2}}(2x-2)+\sqrt{x^2-2x+2}


dydx=(x1)12x22x+22(x1)+x22x+2\frac{dy}{dx}=(x-1)\frac{1}{2\sqrt{x^2-2x+2}}2(x-1)+\sqrt{x^2-2x+2}


dydx=(x1)2x22x+2+x22x+2\frac{dy}{dx}=\frac{(x-1)^2}{\sqrt{x^2-2x+2}}+\sqrt{x^2-2x+2}


dydx=(x1)2+x22x+2x22x+2x22x+2\frac{dy}{dx}=\frac{(x-1)^2+\sqrt{x^2-2x+2}\sqrt{x^2-2x+2}}{\sqrt{x^2-2x+2}}


dydx=(x22x+1)+(x22x+2)x22x+2\frac{dy}{dx}=\frac{(x^2-2x+1)+(x^2-2x+2)}{\sqrt{x^2-2x+2}}


dydx=(2x24x+3)x22x+2\frac{dy}{dx}=\frac{(2x^2-4x+3)}{\sqrt{x^2-2x+2}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment