using ϵ−δ definition, show that
lim x→2 (1/2 x2 - x + 1)
Let "\\varepsilon >0" be fixed. We may assume that "\\varepsilon \\leqslant \\frac{1}{2}" , otherwise we take "\\delta" for "\\varepsilon =\\frac{1}{2}" . Solve
"\\left| \\frac{1}{2}x^2-x+1-1 \\right|<\\varepsilon \\Leftrightarrow \\left| x^2-2x \\right|<2\\varepsilon \\Leftrightarrow \\\\\\Leftrightarrow \\left\\{ \\begin{array}{c} x^2-2x-2\\varepsilon <0\\\\ x^2-2\\delta \u03b4 x+2\\varepsilon >0\\\\\\end{array} \\right. \\Leftrightarrow \\left\\{ \\begin{array}{c} x\\in \\left( 1-\\sqrt{1+2\\varepsilon},1+\\sqrt{1+2\\varepsilon} \\right)\\\\ x\\in \\left( -\\infty ,1-\\sqrt{1-2\\varepsilon} \\right) \\cup \\left( 1+\\sqrt{1-2\\varepsilon},+\\infty \\right)\\\\\\end{array} \\right."
Thus
"x\\in \\left( 1+\\sqrt{1-2\\varepsilon},1+\\sqrt{1+2\\varepsilon} \\right) \\Rightarrow \\left| \\frac{1}{2}x^2-x+1-1 \\right|<\\varepsilon"
Let "\\delta =\\min \\left( \\sqrt{1+2\\varepsilon}-1,1-\\sqrt{1-2\\varepsilon} \\right) >0"
Then "x\\in \\left( 2-\\delta ,2+\\delta \\right) \\Rightarrow \\left| \\frac{1}{2}x^2-x+1-1 \\right|<\\varepsilon"
which by the definition proves
"\\underset{x\\rightarrow 2}{\\lim}\\left( \\frac{1}{2}x^2-x+1 \\right) =1"
Comments
Leave a comment