Find the Derivative of the following function
1.y=x2cosx−2xsinx−2cosxy′=2xcosx+x2(−sinx)−2sinx−−2xcosx−2(−sinx)=−x2sinx2.x(cos2x+3y)=ysinxy=xcos2xsinx−3xy′=(cos2x+x(−2sin2x))(sinx−3x)−xcos2x(cosx−3)(sinx−3x)2==(cos2x−2xsin2x)(sinx−3x)−xcos2x(cosx−3)(sinx−3x)21.\\ y=x^2cosx-2xsinx-2cosx\\ y'=2xcosx+x^2(-sinx)-2sinx-\\-2xcosx-2(-sinx)=-x^2sinx\\ 2.\\ x(cos2x+3y)=ysinx\\ y=\frac{xcos2x}{sinx-3x}\\ y'=\frac{(cos2x+x(-2sin2x))(sinx-3x)-xcos2x(cosx-3)}{(sinx-3x)^2}=\\ =\frac{(cos2x-2xsin2x)(sinx-3x)-xcos2x(cosx-3)}{(sinx-3x)^2}1.y=x2cosx−2xsinx−2cosxy′=2xcosx+x2(−sinx)−2sinx−−2xcosx−2(−sinx)=−x2sinx2.x(cos2x+3y)=ysinxy=sinx−3xxcos2xy′=(sinx−3x)2(cos2x+x(−2sin2x))(sinx−3x)−xcos2x(cosx−3)==(sinx−3x)2(cos2x−2xsin2x)(sinx−3x)−xcos2x(cosx−3)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment