Answer to Question #313454 in Calculus for justt

Question #313454

Find the Derivative of the following function

  1. y = x2 cos x - 2xsinx - 2cosx
  2. x(cos2x + 3y) = ysinx
1
Expert's answer
2022-03-18T10:33:35-0400

1.y=x2cosx2xsinx2cosxy=2xcosx+x2(sinx)2sinx2xcosx2(sinx)=x2sinx2.x(cos2x+3y)=ysinxy=xcos2xsinx3xy=(cos2x+x(2sin2x))(sinx3x)xcos2x(cosx3)(sinx3x)2==(cos2x2xsin2x)(sinx3x)xcos2x(cosx3)(sinx3x)21.\\ y=x^2cosx-2xsinx-2cosx\\ y'=2xcosx+x^2(-sinx)-2sinx-\\-2xcosx-2(-sinx)=-x^2sinx\\ 2.\\ x(cos2x+3y)=ysinx\\ y=\frac{xcos2x}{sinx-3x}\\ y'=\frac{(cos2x+x(-2sin2x))(sinx-3x)-xcos2x(cosx-3)}{(sinx-3x)^2}=\\ =\frac{(cos2x-2xsin2x)(sinx-3x)-xcos2x(cosx-3)}{(sinx-3x)^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment