Evaluate ∫∫∫E 6z^2dV where E is the region below 4x + 2y + 2z = 10 in the first octant.
ANSWER "\\int\\int\\int_{E} \\ 6z^2dV=" "\\frac{625}{4} =156.25\\\\"
EXPLANATION
The projection of the set "E=\\left \\{ \\left ( x,y,z \\right ):0\\leq x\\leq\\frac{5} {2},\\, 0\\leq y\\leq5-2x,\\, 0\\leq z\\leq 5-2x-y\\right \\}"
onto the x0y plane is the region
"D=\\left \\{ \\left ( x,y \\right ):0\\leq x\\leq\\frac{5} {2},\\, 0\\leq y\\leq5-2x \\right \\} ."
"\\int\\int\\int_{E} \\ 6z^2dV=\\int_{0}^{\\frac{5}{2}} \\int_{0}^{5-2x}\\int_{0}^{5-2x-y}6z^2dzdydx=6\\int_{0}^{\\frac{5}{2}} \\int_{0}^{5-2x}\\left [ \\frac{z^3}{3} \\right ]_{0}^{5-2x-y}dydx= 2\\int_{0}^{\\frac{5}{2}} \\int_{0}^{5-2x}\\left (5-2x-y \\right )^3dydx=2\\int_{0}^{\\frac{5}{2}}\\left [ \\frac{\\left ( 5-2x-y \\right )^{4}}{-4} \\right ]_{y=0}^{y=5-2x} dx= \\\\=\\frac{1 }{2}\\int_{0}^{\\frac{5}{2}}(5-2x)^{4}dx= \\frac{1}{2}\\left [ \\frac{(5-2x)^{5}}{-10} \\right ]_{0 }^{\\frac{5}{2}}=\\frac{5^{5}}{20}=\\frac{625}{4} =156.25\\\\"
Comments
Leave a comment