Find the equations of the tangents to the graph of y=x+1/x that are parallel to y+2x=0
Slope of the line y+2x=0: m=-2.
Slope of the tangent: y′=1−1x2.y'=1-\frac{1}{x^2}.y′=1−x21.
We have: y′=my'=my′=m or 1−1x2=−2.1-\frac{1}{x^2}=-2.1−x21=−2.
So, x=13, x=−13.x=\frac{1}{\sqrt{3}},\;x=-\frac{1}{\sqrt{3}}.x=31,x=−31.
y(13)=13+3.y(\frac{1}{\sqrt{3}})=\frac{1}{\sqrt{3}}+\sqrt{3}.y(31)=31+3.
y(−13)=−13−3.y(-\frac{1}{\sqrt{3}})=-\frac{1}{\sqrt{3}}-\sqrt{3}.y(−31)=−31−3.
Equations of the tangent lines:
y−13−3=−2(x−13)y-\frac{1}{\sqrt{3}}-\sqrt{3}=-2(x-\frac{1}{\sqrt{3}})y−31−3=−2(x−31) or y=−2x+23y=-2x+2\sqrt{3}y=−2x+23 .
y+13+3=−2(x+13)y+\frac{1}{\sqrt{3}}+\sqrt{3}=-2(x+\frac{1}{\sqrt{3}})y+31+3=−2(x+31) or y=−2x−23.y=-2x-2\sqrt{3}.y=−2x−23.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments