Find the equations of the tangents to the graph of y=x+1/x that are parallel to y+2x=0
Slope of the line y+2x=0: m=-2.
Slope of the tangent: "y'=1-\\frac{1}{x^2}."
We have: "y'=m" or "1-\\frac{1}{x^2}=-2."
So, "x=\\frac{1}{\\sqrt{3}},\\;x=-\\frac{1}{\\sqrt{3}}."
"y(\\frac{1}{\\sqrt{3}})=\\frac{1}{\\sqrt{3}}+\\sqrt{3}."
"y(-\\frac{1}{\\sqrt{3}})=-\\frac{1}{\\sqrt{3}}-\\sqrt{3}."
Equations of the tangent lines:
"y-\\frac{1}{\\sqrt{3}}-\\sqrt{3}=-2(x-\\frac{1}{\\sqrt{3}})" or "y=-2x+2\\sqrt{3}" .
"y+\\frac{1}{\\sqrt{3}}+\\sqrt{3}=-2(x+\\frac{1}{\\sqrt{3}})" or "y=-2x-2\\sqrt{3}."
Comments
Leave a comment