A cylindrical container has one end opened and the other end closed. It has a circular base of radius r cm. Given that the total surface area of the container is 200π cm2.
(a) Show that the volume of the container is V = 100πr - πr^3/2 cm3
(b) Find the maximum value of V.
Let height of the cylindrical container be h cm
So πr² + 2πrh = 200π
=> r² + 2rh = 200
=> h = "\\frac{200-r\u00b2}{2r}"
So volume of the cylindrical container is , V =
"\u03c0r\u00b2h=(\\frac{200-r\u00b2}{2r}) = \u03c0r(100-\\frac{r\u00b2}{2})"
= "(100\u03c0r-\\frac{\u03c0r\u00b3}{2})" cm³
Now we find maximum volume....
"\\frac{dV}{dr} = 100\u03c0 - \\frac{3\u03c0r\u00b2}{2}"
"\\frac{dV}{dr} = 0 =>" "100\u03c0 - \\frac{3\u03c0r\u00b2}{2}=0"
=> r² = "\\frac{200}{3}"
=> r = "\\frac{10\\sqrt2}{\\sqrt3}"
Now "\\frac{d\u00b2V}{dr\u00b2} = - 3\u03c0r"
"[\\frac{d\u00b2V}{dr\u00b2} ]_{r=\\frac{10\\sqrt2}{\\sqrt3}}= - 3\u03c0*\\frac{10\\sqrt2}{\\sqrt3} <0"
So volume is maximum when r= "\\frac{10\\sqrt2}{\\sqrt3}"
So maximum volume is "(100\u03c0r-\\frac{\u03c0r\u00b3}{2})"
= "\\frac{\u03c0}{2}[200-r\u00b2]r"
= "\\frac{\u03c0}{2}[200-\\frac{200}{3}]\\frac{10\\sqrt2}{\\sqrt3}"
= "\\frac{\u03c0}{2}[\\frac{400}{3}]\\frac{10\\sqrt2}{\\sqrt3}"
= 1710.06644 cm³
= 1710.07 cm³ ( Correct up to two decimal places)
Comments
Leave a comment