b) Find whether the following series are convergent or divergent β π /π + β π /π + β π /8 + ...
"\\sqrt{\\frac{1}{4}}+\\sqrt{\\frac{2}{6}}+\\sqrt{\\frac{3}{8}}+...=\\sum_{n=1}^{\\infty}\\sqrt{\\frac{n}{2(n+1)}}\\\\\na_n=\\sqrt{\\frac{n}{2(n+1)}}, a_{n+1}=\\sqrt{\\frac{n+1}{2(n+1+1)}}=\\sqrt{\\frac{n+1}{2(n+2)}}\\\\\n\\lim\\limits_{n\\to\\infty}\\frac{a_{n+1}}{a_{n}}=\\lim\\limits_{n\\to\\infty}\\frac{\\sqrt{\\frac{n+1}{2(n+2)}}}{\\sqrt{\\frac{n}{2(n+1)}}}=\\\\\n=\\lim\\limits_{n\\to\\infty}\\frac{n+1}{\\sqrt{n(n+2)}}=1\\\\\n\\lim\\limits_{n\\to\\infty}a_n=\\lim\\limits_{n\\to\\infty}\\sqrt{\\frac{n}{2(n+1)}}=\\\\\n=\\lim\\limits_{n\\to\\infty}\\sqrt{\\frac{n}{2n(1+\\frac{1}{n})}}=\\sqrt{\\frac{1}{2}}\\neq0"
The series are divergent.
Comments
Leave a comment