Find the ๐th order differential coefficient of ๐ฆ = sin ๐ฅ log(๐๐ฅ + ๐).
"y=sinx log(ax+b)"
Using product rule, we have
"\\frac{dy}{dx}(UV)=U\\frac{dv}{dx}+V\\frac{du}{dx}"
"\\frac{dy}{dx}=sinx\\frac{d}{dx}log(ax+b)+log(ax+b)\\frac{d}{dx}sinx"
"\\frac{d^2y}{dx}=" "sinx\\frac{d}{dx}(\\frac{1\\times a}{ax+b})+(\\frac{1\\times a}{ax+b})\\frac{d}{dx}sinx+\nlog(ax+b)cosx+cos\\frac{d}{dx}log(ax+b)"
"\\frac{d^3y}{dx}=sinx\\frac{(-1)^2\\times a^3\\times2}{(ax+b)^3}\n+\\frac{(-1)^1\\times a^2}{(ax+b)^2}cosx+\\frac{1\\times a}{ax+b}(-sinx)\n+cosx\\frac{(-1)^1\\times a^2}{(ax+b)^2}+log(ax+b)(-cosx)\n+cosx\\frac{(-1)^2\\times a^3\\times 2}{(ax+b)^3}"
"\\frac{d^4y}{dx}=sinx\\frac{-1^3\\times a^4\\times 6}{(ax+b)^4}\n\n+\\frac{-1^2\\times a^3\\times 2}{(ax+b)^3}cosx\n+\\frac{-1^1\\times a^2}{(ax+b)^2}(-sinx)+\\frac{-1^2\\times a^3\\times 2}{(ax+b)^3}cosx\n+\\frac{1\\times a}{ax+b}(-cosx)+(-sinx)\\frac{-1^1\\times a^2}{(ax+b)^4}\n+cosx\\frac{-1^2\\times a^3\\times 2}{(ax+b)^3}\n+\\frac{-1^1\\times a^2}{(ax+b)^2}(-sinx)+\nlog(ax+b)sinx+(-cosx)\\frac{1\\times a}{ax+b}+cosx\\frac{-1^3\\times a^4\\times 6}{(ax+b)^4}\n+(-sinx)\\frac{-1^2\\times a^3\\times 2}{(ax+b)^3}"
"=sinx\\frac{-1^3\\times a^4\\times 6}{(ax+b)^4}+3(cosx\\frac{-1^2\\times a^3\\times 2}{(ax+b)^3})\n-3(sinx\\frac{-1^1\\times a^2}{(ax+b)^2})-2(cosx\\frac{1\\times a}{ax+b})\n+log(ax+b)sinx\n-sinx\\frac{-1^2\\times a^3\\times 2}{(ax+b)^3}+cosx\\frac{-1^3\\times a^4\\times 6}{(ax+b)^4}"
"\\frac{d^ny}{dx}=" "sinx\\frac{-1^{n-1}(n-1){!}a^n}{(ax+b)^{n}})+(n-1)(cos x\\frac{-1^{n-2}(n-2){!}a^{n-1}}{(ax+b)^{n-1}})\n-(n-1)(sinx\\frac{-1^{n-3}(n-3){!}a^{n-2}}{(ax+b)^{n-2}})\n-(n-2)(cos x\\frac{1\\times a}{ax+b})\n+log(ax+b)(sin(x+\\frac{n\\pi}{2})-(sinx\\frac{-1^{n-2}(n-2){!}a^{n-1}}{(ax+b)^{n-1}})+cos x\\frac{-1^{n-1}(n-1){!}a^n}{(ax+b)^{n}})"
Comments
Leave a comment