Answer to Question #311349 in Calculus for Ankit

Question #311349

Find the 𝑛th order differential coefficient of 𝑦 = sin π‘₯ log(π‘Žπ‘₯ + 𝑏).

1
Expert's answer
2022-03-16T14:25:19-0400

y=sinxlog(ax+b)y=sinx log(ax+b)

Using product rule, we have

dydx(UV)=Udvdx+Vdudx\frac{dy}{dx}(UV)=U\frac{dv}{dx}+V\frac{du}{dx}

dydx=sinxddxlog(ax+b)+log(ax+b)ddxsinx\frac{dy}{dx}=sinx\frac{d}{dx}log(ax+b)+log(ax+b)\frac{d}{dx}sinx


=sinx(1Γ—aax+b)+log(ax+b)cosx=sinx(\frac{1\times a}{ax+b})+log(ax+b)cosx

d2ydx=\frac{d^2y}{dx}= sinxddx(1Γ—aax+b)+(1Γ—aax+b)ddxsinx+log(ax+b)cosx+cosddxlog(ax+b)sinx\frac{d}{dx}(\frac{1\times a}{ax+b})+(\frac{1\times a}{ax+b})\frac{d}{dx}sinx+ log(ax+b)cosx+cos\frac{d}{dx}log(ax+b)


=sinx(βˆ’1)1Γ—a2(ax+b)2+1Γ—aax+bcosx+log(ax+b)(βˆ’sinx)+cosx(βˆ’1)1Γ—a2(ax+b)2=sinx\frac{(-1)^1\times a^2}{(ax+b)^2}+\frac{1\times a}{ax+b}cosx+log(ax+b)(-sinx) +cosx\frac{(-1)^1\times a^2}{(ax+b)^2}

d3ydx=sinx(βˆ’1)2Γ—a3Γ—2(ax+b)3+(βˆ’1)1Γ—a2(ax+b)2cosx+1Γ—aax+b(βˆ’sinx)+cosx(βˆ’1)1Γ—a2(ax+b)2+log(ax+b)(βˆ’cosx)+cosx(βˆ’1)2Γ—a3Γ—2(ax+b)3\frac{d^3y}{dx}=sinx\frac{(-1)^2\times a^3\times2}{(ax+b)^3} +\frac{(-1)^1\times a^2}{(ax+b)^2}cosx+\frac{1\times a}{ax+b}(-sinx) +cosx\frac{(-1)^1\times a^2}{(ax+b)^2}+log(ax+b)(-cosx) +cosx\frac{(-1)^2\times a^3\times 2}{(ax+b)^3}


=sinxβˆ’12Γ—a3Γ—2(ax+b)2+2(cosxβˆ’11Γ—a2(ax+b)2+log(ax+b)(βˆ’cosx)+cosx(βˆ’1)2Γ—a3Γ—2(ax+b)3=sinx\frac{-1^2\times a^3\times 2}{(ax+b)^2}+2(cosx\frac{-1^1\times a^2}{(ax+b)^2} +log(ax+b)(-cosx)+cosx\frac{(-1)^2\times a^3\times 2}{(ax+b)^3}

d4ydx=sinxβˆ’13Γ—a4Γ—6(ax+b)4+βˆ’12Γ—a3Γ—2(ax+b)3cosx+βˆ’11Γ—a2(ax+b)2(βˆ’sinx)+βˆ’12Γ—a3Γ—2(ax+b)3cosx+1Γ—aax+b(βˆ’cosx)+(βˆ’sinx)βˆ’11Γ—a2(ax+b)4+cosxβˆ’12Γ—a3Γ—2(ax+b)3+βˆ’11Γ—a2(ax+b)2(βˆ’sinx)+log(ax+b)sinx+(βˆ’cosx)1Γ—aax+b+cosxβˆ’13Γ—a4Γ—6(ax+b)4+(βˆ’sinx)βˆ’12Γ—a3Γ—2(ax+b)3\frac{d^4y}{dx}=sinx\frac{-1^3\times a^4\times 6}{(ax+b)^4} +\frac{-1^2\times a^3\times 2}{(ax+b)^3}cosx +\frac{-1^1\times a^2}{(ax+b)^2}(-sinx)+\frac{-1^2\times a^3\times 2}{(ax+b)^3}cosx +\frac{1\times a}{ax+b}(-cosx)+(-sinx)\frac{-1^1\times a^2}{(ax+b)^4} +cosx\frac{-1^2\times a^3\times 2}{(ax+b)^3} +\frac{-1^1\times a^2}{(ax+b)^2}(-sinx)+ log(ax+b)sinx+(-cosx)\frac{1\times a}{ax+b}+cosx\frac{-1^3\times a^4\times 6}{(ax+b)^4} +(-sinx)\frac{-1^2\times a^3\times 2}{(ax+b)^3}

=sinxβˆ’13Γ—a4Γ—6(ax+b)4+3(cosxβˆ’12Γ—a3Γ—2(ax+b)3)βˆ’3(sinxβˆ’11Γ—a2(ax+b)2)βˆ’2(cosx1Γ—aax+b)+log(ax+b)sinxβˆ’sinxβˆ’12Γ—a3Γ—2(ax+b)3+cosxβˆ’13Γ—a4Γ—6(ax+b)4=sinx\frac{-1^3\times a^4\times 6}{(ax+b)^4}+3(cosx\frac{-1^2\times a^3\times 2}{(ax+b)^3}) -3(sinx\frac{-1^1\times a^2}{(ax+b)^2})-2(cosx\frac{1\times a}{ax+b}) +log(ax+b)sinx -sinx\frac{-1^2\times a^3\times 2}{(ax+b)^3}+cosx\frac{-1^3\times a^4\times 6}{(ax+b)^4}


dnydx=\frac{d^ny}{dx}= sinxβˆ’1nβˆ’1(nβˆ’1)!an(ax+b)n)+(nβˆ’1)(cosxβˆ’1nβˆ’2(nβˆ’2)!anβˆ’1(ax+b)nβˆ’1)βˆ’(nβˆ’1)(sinxβˆ’1nβˆ’3(nβˆ’3)!anβˆ’2(ax+b)nβˆ’2)βˆ’(nβˆ’2)(cosx1Γ—aax+b)+log(ax+b)(sin(x+nΟ€2)βˆ’(sinxβˆ’1nβˆ’2(nβˆ’2)!anβˆ’1(ax+b)nβˆ’1)+cosxβˆ’1nβˆ’1(nβˆ’1)!an(ax+b)n)sinx\frac{-1^{n-1}(n-1){!}a^n}{(ax+b)^{n}})+(n-1)(cos x\frac{-1^{n-2}(n-2){!}a^{n-1}}{(ax+b)^{n-1}}) -(n-1)(sinx\frac{-1^{n-3}(n-3){!}a^{n-2}}{(ax+b)^{n-2}}) -(n-2)(cos x\frac{1\times a}{ax+b}) +log(ax+b)(sin(x+\frac{n\pi}{2})-(sinx\frac{-1^{n-2}(n-2){!}a^{n-1}}{(ax+b)^{n-1}})+cos x\frac{-1^{n-1}(n-1){!}a^n}{(ax+b)^{n}})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment