y=sinxlog(ax+b)
Using product rule, we have
dxdyβ(UV)=Udxdvβ+Vdxduβ
dxdyβ=sinxdxdβlog(ax+b)+log(ax+b)dxdβsinx
=sinx(ax+b1Γaβ)+log(ax+b)cosx dxd2yβ= sinxdxdβ(ax+b1Γaβ)+(ax+b1Γaβ)dxdβsinx+log(ax+b)cosx+cosdxdβlog(ax+b)
=sinx(ax+b)2(β1)1Γa2β+ax+b1Γaβcosx+log(ax+b)(βsinx)+cosx(ax+b)2(β1)1Γa2β dxd3yβ=sinx(ax+b)3(β1)2Γa3Γ2β+(ax+b)2(β1)1Γa2βcosx+ax+b1Γaβ(βsinx)+cosx(ax+b)2(β1)1Γa2β+log(ax+b)(βcosx)+cosx(ax+b)3(β1)2Γa3Γ2β
=sinx(ax+b)2β12Γa3Γ2β+2(cosx(ax+b)2β11Γa2β+log(ax+b)(βcosx)+cosx(ax+b)3(β1)2Γa3Γ2β dxd4yβ=sinx(ax+b)4β13Γa4Γ6β+(ax+b)3β12Γa3Γ2βcosx+(ax+b)2β11Γa2β(βsinx)+(ax+b)3β12Γa3Γ2βcosx+ax+b1Γaβ(βcosx)+(βsinx)(ax+b)4β11Γa2β+cosx(ax+b)3β12Γa3Γ2β+(ax+b)2β11Γa2β(βsinx)+log(ax+b)sinx+(βcosx)ax+b1Γaβ+cosx(ax+b)4β13Γa4Γ6β+(βsinx)(ax+b)3β12Γa3Γ2β
=sinx(ax+b)4β13Γa4Γ6β+3(cosx(ax+b)3β12Γa3Γ2β)β3(sinx(ax+b)2β11Γa2β)β2(cosxax+b1Γaβ)+log(ax+b)sinxβsinx(ax+b)3β12Γa3Γ2β+cosx(ax+b)4β13Γa4Γ6β
dxdnyβ= sinx(ax+b)nβ1nβ1(nβ1)!anβ)+(nβ1)(cosx(ax+b)nβ1β1nβ2(nβ2)!anβ1β)β(nβ1)(sinx(ax+b)nβ2β1nβ3(nβ3)!anβ2β)β(nβ2)(cosxax+b1Γaβ)+log(ax+b)(sin(x+2nΟβ)β(sinx(ax+b)nβ1β1nβ2(nβ2)!anβ1β)+cosx(ax+b)nβ1nβ1(nβ1)!anβ)
Comments
Leave a comment