Question #311022

Find the position vector when acceleration a(t)= 2i + j + 3k


1
Expert's answer
2022-03-14T17:06:41-0400

Speed: v(t)=a(t)dt=(2i+j+3k)dt=2ti+tj+3tk+C.v(t)=\int{a(t)dt}=\int{(2i+j+3k)}dt=2ti+tj+3tk+C.

Position: s(t)=v(t)dt=(2ti+tj+3yk+C)dt=t2i+12t2j+32t2k+Ct+d.s(t)=\int{v(t)dt}=\int{(2ti+tj+3yk+C)dt}=t^2i+\frac{1}{2}t^2j+\frac{3}{2}t^2k+Ct+d.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS