Find the position vector when acceleration a(t)= 2i + j + 3k
Speed: v(t)=∫a(t)dt=∫(2i+j+3k)dt=2ti+tj+3tk+C.v(t)=\int{a(t)dt}=\int{(2i+j+3k)}dt=2ti+tj+3tk+C.v(t)=∫a(t)dt=∫(2i+j+3k)dt=2ti+tj+3tk+C.
Position: s(t)=∫v(t)dt=∫(2ti+tj+3yk+C)dt=t2i+12t2j+32t2k+Ct+d.s(t)=\int{v(t)dt}=\int{(2ti+tj+3yk+C)dt}=t^2i+\frac{1}{2}t^2j+\frac{3}{2}t^2k+Ct+d.s(t)=∫v(t)dt=∫(2ti+tj+3yk+C)dt=t2i+21t2j+23t2k+Ct+d.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments