The volume of a cone = 1 3 ∗ π ∗ r 2 ∗ h
\tfrac{1}{3}*π *r^2*h 3 1 ∗ π ∗ r 2 ∗ h
Let the radius of the sphere = a
the radius of the cone =r
by similar triangles s i n ( θ ) = a h − a sin (θ)=\tfrac{a}{h-a} s in ( θ ) = h − a a = r h 2 + r 2 \tfrac{r}{\sqrt{h^2+r^2}}
h 2 + r 2 r
= a ∗ ( h 2 + r 2 ) = r ( h − a ) =a*(\sqrt{h^2+r^2) }=r(h-a) = a ∗ ( h 2 + r 2 ) = r ( h − a )
on squaring both sides
a 2 ( h 2 + r 2 ) = r 2 ( h − a ) 2 a^2(h^2+r^2)=r^2(h-a)^2 a 2 ( h 2 + r 2 ) = r 2 ( h − a ) 2
= a 2 h 2 + a 2 r 2 = h 2 r 2 − 2 a h r 2 + a 2 r 2 =a^2h^2+a^2r^2= h^2r^2-2ahr^2+a^2r^2 = a 2 h 2 + a 2 r 2 = h 2 r 2 − 2 ah r 2 + a 2 r 2
making r 2 r^2 r 2 to be the subject of the formulae we have
r 2 = a 2 h h − 2 a r^2= \frac{a^2h}{h-2a} r 2 = h − 2 a a 2 h
The volume V = 1 3 ∗ π ∗ h 2 h − 2 a ∗ h
\tfrac{1}{3}*π *\frac{h^2}{h-2a}*h 3 1 ∗ π ∗ h − 2 a h 2 ∗ h
at minimum volume ;
d V d h = π a 2 3 [ ( h − 2 a ) 2 h − h 2 ( 1 ) ( h − 2 a ) 2 ] = 0 \frac{dV}{dh}= \frac{\pi a^2}{3}[\frac{(h-2a)2h-h^2(1)}{(h-2a)^2}]=0 d h d V = 3 π a 2 [ ( h − 2 a ) 2 ( h − 2 a ) 2 h − h 2 ( 1 ) ] = 0
2 ( h − 2 a ) h − h 2 = 0 2(h-2a)h-h^2=0 2 ( h − 2 a ) h − h 2 = 0
2 h − 4 a − h = 0 2h-4a-h=0 2 h − 4 a − h = 0
h − 4 a = 0 h-4a=0 h − 4 a = 0
h = 4 a h=4a h = 4 a
but a =8 inches
therefore h = 4 ∗ 8 = 32 h=4*8=32 h = 4 ∗ 8 = 32
The height of the cone is 32 inches.
r 2 = 8 2 ∗ 32 32 − 2 ∗ 8 r^2= \frac{8^2*32}{32-2*8} r 2 = 32 − 2 ∗ 8 8 2 ∗ 32
r 2 = 2048 16 r^2=\frac{2048}{16} r 2 = 16 2048
r 2 = 128 r^2=128 r 2 = 128
r = 128 r= \sqrt{128} r = 128
r = 11.3137 r= 11.3137 r = 11.3137
The height of the cone is 32 inches and the radius is 11.3137inches.
Comments