Find the dimensions of a right circular cone of minimum volume V that can be
circumscribed about a sphere of radius 8 inches.
The volume of a cone = "\u200b\n \\tfrac{1}{3}*\u03c0 *r^2*h"
Let the radius of the sphere = a
the radius of the cone =r
by similar triangles "sin (\u03b8)=\\tfrac{a}{h-a}" = "\\tfrac{r}{\\sqrt{h^2+r^2}}\n\u200b\n \n\u200b\n \n\u200b"
"=a*(\\sqrt{h^2+r^2) }=r(h-a)"
on squaring both sides
"a^2(h^2+r^2)=r^2(h-a)^2"
"=a^2h^2+a^2r^2= h^2r^2-2ahr^2+a^2r^2"
making "r^2" to be the subject of the formulae we have
"r^2= \\frac{a^2h}{h-2a}"
The volume V = "\u200b\n \\tfrac{1}{3}*\u03c0 *\\frac{h^2}{h-2a}*h"
at minimum volume ;
"\\frac{dV}{dh}= \\frac{\\pi a^2}{3}[\\frac{(h-2a)2h-h^2(1)}{(h-2a)^2}]=0"
"2(h-2a)h-h^2=0"
"2h-4a-h=0"
"h-4a=0"
"h=4a"
but a =8 inches
therefore "h=4*8=32"
The height of the cone is 32 inches.
"r^2= \\frac{8^2*32}{32-2*8}"
"r^2=\\frac{2048}{16}"
"r^2=128"
"r= \\sqrt{128}"
"r= 11.3137"
The height of the cone is 32 inches and the radius is 11.3137inches.
Comments
Leave a comment