Find favg for the functions given on the interval and determine the value of c in the given
interval for which f(c) = favg.
a) f(x) = 9 − 2e^(4x+1) on [2,6]
b) 8 − cos (x/4) on [0 4π]
We know that
"{f_{avg}} = \\frac{1}{{b - a}}\\int\\limits_a^b {f\\left( x \\right)\\,dx} \\"
Solution (a)
"f\\left( x \\right) = 9 - 2{e^{4x + 1}}" for the interval "[2, 6]"
"\\begin{gathered}\n {f_{avg}} = \\frac{1}{{6 - 2}}\\int\\limits_2^6 {\\left( {9 - 2{e^{4x + 1}}} \\right)dx} \\\\\n {f_{avg}} = \\frac{9}{4}\\int\\limits_2^6 {\\left( 1 \\right)dx} - \\frac{2}{4}\\int\\limits_2^6 {\\left( {{e^{4x + 1}}} \\right)dx} \\\\\n {f_{avg}} = \\frac{9}{4}\\left[ x \\right]_2^6 - \\frac{1}{2}\\left[ {\\frac{{{e^{4x + 1}}}}{4}} \\right]_2^6 \\\\\n {f_{avg}} = \\frac{9}{4}\\left[ {6 - 2} \\right] - \\frac{1}{8}\\left[ {{e^{4x + 1}}} \\right]_2^6 \\\\\n {f_{avg}} = \\frac{9}{4}\\left[ 4 \\right] - \\frac{1}{8}\\left[ {{e^{4\\left( 6 \\right) + 1}} - {e^{4\\left( 2 \\right) + 1}}} \\right] \\\\\n {f_{avg}} = 9 - \\frac{1}{8}\\left[ {{e^{25}} - {e^9}} \\right] \\\\\n {f_{avg}} = 9 - \\frac{1}{8}\\left[ {{e^{25}} - {e^9}} \\right] \\\\\n {f_{avg}} = - 9000611395 \\\\ \n\\end{gathered}"
Then for "f(c)=f_{avg}" means
"f\\left( c \\right) = {f_{avg}} \\\\\n 9 - 2{e^{4c + 1}} = - 9000611395 \\\\\n 2{e^{4c + 1}} = 9 + 9000611395 \\\\\n 2{e^{4c + 1}} = 9000611404 \\\\\n {e^{4c + 1}} = 4500305702 \\\\\n 4c + 1 = \\ln \\left( {4500305702} \\right) \\\\\n 4c + 1 = 22.22741117 \\\\\n 4c = 21.22741117 \\\\\n c = 5.306852791 \\\\"
Solution (b)
"f\\left( x \\right) = 8 - \\cos \\left( {\\tfrac{x}{4}} \\right)" for the interval "[0, 4\\pi]"
"{f_{avg}} = \\frac{1}{{4\\pi - 0}}\\int\\limits_0^{4\\pi } {\\left( {8 - \\cos \\left( {\\tfrac{x}{4}} \\right)} \\right)dx} \\\\\n {f_{avg}} = \\frac{1}{{4\\pi }}\\int\\limits_0^{4\\pi } {\\left( 8 \\right)dx} + \\frac{1}{{4\\pi }}\\int\\limits_0^{4\\pi } {\\left( {\\cos \\left( {\\tfrac{x}{4}} \\right)} \\right)dx} \\\\\n {f_{avg}} = \\frac{8}{{4\\pi }}\\left[ x \\right]_0^{4\\pi } + \\frac{1}{{4\\pi }}\\left[ {\\frac{{\\sin \\left( {\\tfrac{x}{4}} \\right)}}{{\\tfrac{1}{4}}}} \\right]_0^{4\\pi } \\\\\n {f_{avg}} = \\frac{2}{\\pi }\\left[ {4\\pi - 0} \\right] + \\frac{4}{{4\\pi }}\\left[ {\\sin \\left( {\\tfrac{x}{4}} \\right)} \\right]_0^{4\\pi } \\\\\n {f_{avg}} = 8 + \\frac{1}{\\pi }\\left[ {\\sin \\left( {\\tfrac{{4\\pi }}{4}} \\right) - \\sin \\left( {\\tfrac{0}{4}} \\right)} \\right] \\\\\n {f_{avg}} = 8 + \\frac{1}{\\pi }\\left[ {0 - 0} \\right] \\\\\n {f_{avg}} = 8 \\\\"
Now for
"f\\left( c \\right) = {f_{avg}}\\\\\n 8 - \\cos \\left( {\\tfrac{c}{4}} \\right) = 8 \\\\\n \\cos \\left( {\\tfrac{c}{4}} \\right) = 0 \\\\\n \\frac{c}{4} = \\frac{\\pi }{2} \\\\\n c = 2\\pi \\\\"
Comments
Leave a comment