Answer to Question #313386 in Calculus for justt

Question #313386

Find the derivative of a function using Limit definition of derivative.

y = 4 √x


1
Expert's answer
2022-03-18T09:20:59-0400

f(x)=limh0f(x+h)f(x)hf'(x)=lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}

f(x)=4limh0(x+h)(x)h=4(x+h)(x)h(x+h)+(x)(x+h)+(x)=4limh01x+hxhx+h+x=4limh01x+h+x=4limh01x+0+x=2xf'(x)=4lim_{h \rightarrow 0}\frac{\sqrt{(x+h)}-\sqrt{(x)}}{h}=4\frac{\sqrt{(x+h)}-\sqrt{(x)}}{h}\frac{\sqrt{(x+h)}+\sqrt{(x)}}{{\sqrt{(x+h)}+\sqrt{(x)}}} =4lim_{h \rightarrow 0}\frac{1x+h-x}{h\sqrt{x+h}+\sqrt{x}}=4lim_{h \rightarrow 0}\frac{1}{\sqrt{x+h}+\sqrt{x}}=4lim_{h \rightarrow 0}\frac{1}{\sqrt{x+0}+\sqrt{x}}=\frac{2}{\sqrt{x}}






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment