Find the derivative of a function using Limit definition of derivative.
y = 4 √x
"f'(x)=lim_{h \\rightarrow 0}\\frac{f(x+h)-f(x)}{h}"
"f'(x)=4lim_{h \\rightarrow 0}\\frac{\\sqrt{(x+h)}-\\sqrt{(x)}}{h}=4\\frac{\\sqrt{(x+h)}-\\sqrt{(x)}}{h}\\frac{\\sqrt{(x+h)}+\\sqrt{(x)}}{{\\sqrt{(x+h)}+\\sqrt{(x)}}} =4lim_{h \\rightarrow 0}\\frac{1x+h-x}{h\\sqrt{x+h}+\\sqrt{x}}=4lim_{h \\rightarrow 0}\\frac{1}{\\sqrt{x+h}+\\sqrt{x}}=4lim_{h \\rightarrow 0}\\frac{1}{\\sqrt{x+0}+\\sqrt{x}}=\\frac{2}{\\sqrt{x}}"
Comments
Leave a comment