Find the derivative of a function using Limit definition of derivative.
y = 4 √x
f′(x)=limh→0f(x+h)−f(x)hf'(x)=lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)
f′(x)=4limh→0(x+h)−(x)h=4(x+h)−(x)h(x+h)+(x)(x+h)+(x)=4limh→01x+h−xhx+h+x=4limh→01x+h+x=4limh→01x+0+x=2xf'(x)=4lim_{h \rightarrow 0}\frac{\sqrt{(x+h)}-\sqrt{(x)}}{h}=4\frac{\sqrt{(x+h)}-\sqrt{(x)}}{h}\frac{\sqrt{(x+h)}+\sqrt{(x)}}{{\sqrt{(x+h)}+\sqrt{(x)}}} =4lim_{h \rightarrow 0}\frac{1x+h-x}{h\sqrt{x+h}+\sqrt{x}}=4lim_{h \rightarrow 0}\frac{1}{\sqrt{x+h}+\sqrt{x}}=4lim_{h \rightarrow 0}\frac{1}{\sqrt{x+0}+\sqrt{x}}=\frac{2}{\sqrt{x}}f′(x)=4limh→0h(x+h)−(x)=4h(x+h)−(x)(x+h)+(x)(x+h)+(x)=4limh→0hx+h+x1x+h−x=4limh→0x+h+x1=4limh→0x+0+x1=x2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment