a ∫04∫−28(ey2+1)dxdy=∫04(xey2+x)∣−28=∫04(10ey2+10+C)dy=5πerfi(y)+y(10+C)∣04=5πerfi(4)+4(10+C)+C1
b.
∫3x212∫(−12)0x5siny4dxdy=∫3x212siny4x6/6+C∣−120dy=497664C∫3x212siny4dy=497664C18(Γ(41,ix8)+Γ(41,−ix8)−Γ(41,20736i)−Γ(41,−20736i))sin(8π)+(iΓ(41,ix8)−iΓ(41,−ix8)−iΓ(41,20736i)+iΓ(41,−20736i))cos(8π)
Comments