Question #313354

Evaluate:



a) ∫∫D (e^(y^2) + 1) dA where D is the triangle with vertices (0,0), (-2,4) and (8,4).



b) ∫∫D x^(5)sin(y^4) dA where D is the region in the 2nd quadrant bounded by y =3x^2, y = 12 and the y-axis.

1
Expert's answer
2022-03-20T06:43:29-0400

a 0428(ey2+1)dxdy=04(xey2+x)28=04(10ey2+10+C)dy=5πerfi(y)+y(10+C)04=5πerfi(4)+4(10+C)+C1\int_0^4 \int_{-2}^8(e^{y^2}+1)dxdy= \int_0^4(xe^{y^2}+x)|_{-2}^8= \int_0^4(10e^{y^2}+10+C)dy=5\sqrt\pi erfi(y)+y(10+C)|_0^4=5\sqrt{\pi} erfi(4)+4(10+C)+ C_1

b.


3x212(12)0x5siny4dxdy=3x212siny4x6/6+C120dy=497664C3x212siny4dy=497664C1(Γ(14,ix8)+Γ(14,ix8)Γ(14,20736i)Γ(14,20736i))sin(π8)+(iΓ(14,ix8)iΓ(14,ix8)iΓ(14,20736i)+iΓ(14,20736i))cos(π8)8\int_{3x^2}^{12}\int_{(-12)}^0 x^5siny^4 dxdy=\int_{3x^2}^{12}siny^4x^6/6+C|_{-12}^0 dy=497664C\int_{3x^2}^{12}siny^4 dy=497664C_1 \dfrac{\left(\operatorname{\Gamma}\left(\frac{1}{4},\mathrm{i}x^8\right)+\operatorname{\Gamma}\left(\frac{1}{4},-\mathrm{i}x^8\right)-\operatorname{\Gamma}\left(\frac{1}{4},20736\mathrm{i}\right)-\operatorname{\Gamma}\left(\frac{1}{4},-20736\mathrm{i}\right)\right)\sin\left(\frac{{\pi}}{8}\right)+\left(\mathrm{i}\operatorname{\Gamma}\left(\frac{1}{4},\mathrm{i}x^8\right)-\mathrm{i}\operatorname{\Gamma}\left(\frac{1}{4},-\mathrm{i}x^8\right)-\mathrm{i}\operatorname{\Gamma}\left(\frac{1}{4},20736\mathrm{i}\right)+\mathrm{i}\operatorname{\Gamma}\left(\frac{1}{4},-20736\mathrm{i}\right)\right)\cos\left(\frac{{\pi}}{8}\right)}{8}








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS